$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황
Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways 원문보기

생명과학회지 = Journal of life science, v.22 no.3 = no.143, 2012년, pp.428 - 436  

이유 (연세대학교 원주캠퍼스 생명과학기술학부) ,  김수환 (연세대학교 원주캠퍼스 생명과학기술학부)

초록
AI-Helper 아이콘AI-Helper

단백질 인산화는 세포의 활동을 조절하는 보편적인 과정이다. 브라시노스테로이드(brassinostreoid)에 의해 매개되는 신호전달은 브라시노스테로이드에 의해 활성화된 세포막상의 protein kinase 로부터 인산화되어 있는 전사인자들을 탈인산화하는 연속적인 인산화/탈인산화 과정이다. 브라시노스테로이드에 의해 매개되는 신호전달의 연구는 인산화에 관여하는 kinase 기질상의 아미노산을 밝히고, 그와 관련된 돌연변이체의 표현형을 알아봄으로써 급속하게 발전하였다. BRI1과 BAK1의 자기인산화(autophosphorylation), 상호인산화(transphosphorylation), 타이로신 인산화(tyrosine phosphorylation)를 밝힘으로써 그들의 조절작용을 식물의 생리학적, 발생학적 과정을 더 이해할 수 있는 장이 열렸다. 브라시노스테로이드에 의한 인산화는 수용체에 의해 매개되는 세포 내 함입(endocytosis)과 그에 뒤따르는 수용체의 파괴현상에서도 볼 수 있다. 인산화/탈인산화 과정에 관련하여 브라시노스테로이드에 의해 매개되는 신호전달은 더 연구할 여지가 많이 남아 있다. 이 총설은 단백질의 인산화/탈인산화 과정을 통한 브라시노스테로이드의 신호전달 연구의 최근 상황을 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • However, the order of phosphorylation is not known. Do the phosphorylation sites act as a bar code for reaction specificity? For example, if there are four multiple phosphorylation sites, does the phosphorylation of the first and third sites have a different reaction specificity from that of the first and fourth sites? Do the phosphorylation sites have tissue and/or developmental specificity? Phosphorylation research related to BR signaling is still a widely open area of study.
  • However, the order of phosphorylation is not known. Do the phosphorylation sites act as a bar code for reaction specificity? For example, if there are four multiple phosphorylation sites, does the phosphorylation of the first and third sites have a different reaction specificity from that of the first and fourth sites? Do the phosphorylation sites have tissue and/or developmental specificity? Phosphorylation research related to BR signaling is still a widely open area of study.
본문요약 정보가 도움이 되었나요?

참고문헌 (73)

  1. Aker, J. and S. C. de Vries. 2008. Plasma membrane receptor complexes. Plant Physiol. 147, 1560-1564. 

  2. Albrecht, C., E. Russinova, B. Kemmerling, M., Kwaaitaal, and S. C. de Vries. 2008. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol. 148, 611-619. 

  3. Avraham, R. and Y. Yarden. 2011. Feedback regulation of EGFR signaling, decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104-117. 

  4. Bar, M., M. Sharfman, M. Ron, and A. Avni. 2010. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J. 63, 791-800. 

  5. Cano-Delgado, A., Y. Yin, C. Yu, D., Vafeados, S. Mora-Garcia, J. C. Cheng, K. H. Nam, J. Li, and J. Chory. 2004. BRL1 and BRL3 are novel Brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341-5351. 

  6. Chinchilla, D., L. Shan, P. He, S. C. de Vries, and B. Kemmerling. 2009. One for all, The receptor-associated kinase BAK1. Trends Plant Sci. 14, 535-541. 

  7. Choe, S., R. J. Schmitz, S., Fujioka, S. Takatsuto, M. O. Lee, S. Yoshida, K. A. Feldmann, and F. E. Tax. 2002. Arabidopsis brassinosteroid insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase. Plant Physiol. 130, 1506-1515. 

  8. Clouse, S. D. 2002. Brassinosteroid signaling, novel downstream components emerge. Curr. Biol. 12, R485-487. 

  9. Clouse, S. D. 2011. Brassinosteroid signal transduction, From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell doi, 10.1105/tpc.111.084475. 

  10. Clouse, S. D., M. Langford, and T. C. McMorris. 1996. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671-678. 

  11. Clouse, S. D. and J. M. Sasse. 1998. BRASSINOSTEROIDS, Essential Regulators of Plant Growth and Development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427-451. 

  12. Colcombet, J., A. Boisson-Dernier, R. Ros-Palau, C. E. Vera, and J. I. Schroeder. 2005. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350-3361. 

  13. Deng, Z., X. Zhang, W. Tang, J. A. Oses-Prieto, and N. Suzuki. 2007. A proteomics study of brassinosteroid response in Arabidopsis. Mol. Cell Proteomics 6, 2058-2071. 

  14. Di Rubbo, S., N. G. Irani, and E. Russinova. 2011. PP2A Phosphatases, The "On-Off" Regulatory Switches of Brassinosteroid Signaling. Sci. Signal. 4, pe25. 

  15. Eden, E. R., I. J. White, and C. E. Futter. 2009, Down-regulation of epidermal growth factor receptor signaling within multivesicular bodies. Biochem. Soc. Trans. 37, 173-177. 

  16. Ehsan, H., W. K. Ray, B. Phinney, X. Wang, S. C. Huber, and S. D. Clouse. 2005. Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-beta receptor interacting protein. Plant J. 43, 251-261. 

  17. Friedrichsen, D. M., C. A. Joazeiro, J. Li, T. Hunter, and J. Chory. 2000. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247-1256. 

  18. Fujioka, S. and T. Yokota. 2003. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54, 137-164. 

  19. Gampala, S. S., T. W. Kim, J. X. He, W. Tang, Z. Deng, M. Y. Bai, S. Guan, S. Lalonde, Y. Sun, J. M. Gendron, H. Chen, N. Shibagaki, R. J. Ferl, D. Ehrhardt, K. Chong, A. L. Burlingame, and Z. Y. Wang. 2007. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell 13, 177-189. 

  20. He, J. X., J. M. Gendron, Y. Yang, J. Li, and Z. Y. Wang. 2002. The GSK3- like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 10185-10190. 

  21. He, K., X. Gou, R. A. Powell, H. Yang, T. Yuan, Z. Guo, and J. Li. 2008. Receptor-like protein kinases, BAK1 and BKK1, regulate a light-dependent cell-death control pathway. Plant Signal. Behav. 3, 813-815. 

  22. He, K., X. Gou, T., Yuan, H. Lin, T. Asami, S. Yoshida, S. D. Russell, and J. Li. 2007. BAK1 and BKK1 regulate brassinosteroid- dependent growth and brassinosteroid-independent cell-death pathways. Curr. Biol. 17, 1109-1115. 

  23. Hecht, V., J. P. Vielle-Calzada, M. V. Hartog, E. D. Schmidt, K. Boutilier, U. Grossniklaus, and S. C. de Vries. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127, 803-816. 

  24. Heese, A., D. R. Hann, S. Gimenez-Ibanez, A. M. Jones, K. He, J. Li, J. I. Schroeder, S. C. Peck, and J. P. Rathjen. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217-12222. 

  25. Jaillais, Y., M. Hothorn, Y. Belkhadir, T. Dabi, Z. L. Nimchuk, E. M. Meyerowitz, and J. Chory. 2011. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25, 232-237. 

  26. Janssens, V., S. Longin, and J. Goris. 2008. PP2A holoenzyme assembly, In cauda venenum (the sting is in the tail). Trends Biochem. Sci. 33, 113-121. 

  27. Karlova, R., S. Boeren, E. Russinova, J. Aker, J. Vervoort, and S. C. de Vries. 2006. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID- INSENSITIVE1. Plant Cell 18, 626-638. 

  28. Karlova, R., S. Boeren, W. van Dongen, M. Kwaaitaal, and J. Aker. 2009. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Proteomics 9, 368-379. 

  29. Kemmerling, B., A. Schwedt, P. Rodriguez, S. Mazzotta, M. Frank, S. A. Qamar, T. Mengiste, S., Parker, J. E. Betsuyaku, C. Mussig, B. P. Thomma, C. Albrecht, S. C. de Vries, H. Hirt, and T. Nurnberger. 2007. The BRI1-associated kinase 1, BAK1, has a brassinolide independent role in plant cell-death control. Curr. Biol. 17, 1116-1122. 

  30. Kim, T. W., S. Guan, A. L. Burlingame, and Z. Y. Wang. 2011. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK-3-like kinase BIN2. Mol. Cell 43, 561-571. 

  31. Kim, T. W., S. Guan, Y. Sun, Z. Deng, W. Tang, J. X. Shang, Y. Sun, A. L., Burlingame, and Z. Y. Wang. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biol. 11, 1254-1262. 

  32. Kim, T. W. and Z. Y. Wang. 2010. Brassinosteroid signal transduction from receptor kinases to transcription factors. Ann. Rev. Plant Biol. 61, 681-704. 

  33. Kinoshita, T., A. Cano-Delgado, H. Seto, S. Hiranuma, S. Fujioka, S. Yoshida, and J. Chory. 2005. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171. 

  34. Li, J. and J. Chory. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90, 929-938. 

  35. Li, J. and K. H. Nam. 2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295: 1299-1301. 

  36. Li, J., J. Wen, K. A. Lease, J. T. Doke, F. E. Tax, and J. C. Walker. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222. 

  37. Liu, T. and Z. H. Feng. 2010, Regulation of TGF-beta signaling by protein phosphatases. Biochem. J. 430, 191-198. 

  38. Mora-Garcia, S., G. Vert, Y. Yin, A. Cano-Delgado, H. Cheong, and J. Chory. 2004. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448-460. 

  39. Muto, H., N. Yabe, T. Asami, K. Hasunuma, and K. T. Yamamoto. 2004. Overexpression of constitutive differential growth 1 gene, which encodes a RLCKVII-subfamily protein kinase, causes abnormal differential and elongation growth after organ differentiation in Arabidopsis. Plant Physiol. 136, 3124-3133. 

  40. Nam, K. H. and J. Li. 2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203-212. 

  41. Nam, K. H. and J. Li. 2004. The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROIDINSENSITIVE 1. Plant Cell 16, 2406-2417. 

  42. Oh, M. H., S. D. Clouse, and S. C. Huber. 2009a. Tyrosine phosphorylation in brassinosteroid signaling. Plant Signal. Behav. 4, 1182-1185. 

  43. Oh, M. H., W. K. Ray, S. C. Huber, J. M. Asara, D. A. Gage, and S. D. Clouse. 2000. Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol. 124, 751-766. 

  44. Oh, M. H., X. Wang, U. Kota, M. B. Goshe, S. D. Clouse, and S. C. Huber. 2009b. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 658-663. 

  45. Perez-Perez, J. M., M. R. Ponce, and J. L. Micol. 2002. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev. Biol. 242, 161-173. 

  46. Postel, S., I. Kufner, C. Beuter, S. Mazzotta, A. Schwedt, A. Borlotti, T. Halter, B. Kemmerling, and T. Nurnberger. 2010. The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur. J. Cell Biol. 89, 169-174. 

  47. Rahimi, R. A. and E. B. Leof, 2007. TGF-beta signaling: a tale of two responses. J. Biol. Chem. 102, 593-608. 

  48. Russinova, E., J. W. Borst, M. Kwaaitaal, A. Cano-Delgado, Y. Yin, Chory, J., and S. C. de Vries. 2004. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16, 3216-3229. 

  49. Ryu, H., K. Kim, H. Cho, J. Park, S. Choe, and I. Hwang. 2007. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749-2762. 

  50. Shah, K., E. Russinova, T. W. Jr. Gadella, J. Willemse, and S. C. de Vries. 2002. The Arabidopsis kinase associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev. 16, 1707-1720. 

  51. Shan, L., P. He, J. Li, A. Heese, S. C. Peck, T. Nurnberger, G. B. Martin, and J. Sheen. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17-27. 

  52. Shiu, S. H., W. M. Karlowski, R. Pan, Y. H. Tzeng, K. F. Mayer, and W. H. Li. 2004. Comparative analysis of the receptor- like kinase family in Arabidopsis and rice. Plant Cell 16, 1220-1234. 

  53. Schlessinger, J. 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669-672. 

  54. Schulze, B., T. Mentzel, A. K. Jehle, K. Mueller, S. Beeler, T. Boller, G. Felix, and D. Chinchilla. 2010. Rapid heterodimerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285, 9444-9451. 

  55. Stanevich, V., L. Jiang, K. A. Satyshur, Y. Li, P. D. Jeffrey, Z. Li, P. Menden, M. F. Semmelhack, and Y. Xing. 2011. The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol. Cell 41, 331-342. 

  56. Tang, W., T. W. Kim, J. A. Oses-Prieto, Y. Sun, Z. Deng, S. Zhu, R. Wang, A. L. Burlingame, and Z. Y. Wang. 2008. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557-560. 

  57. Tang, W., M. Yuan, R. Wang, Y. Yang, C. Wang, J. A. Oses-Prieto, T. W. Kim, H. W. Zhou, Z. Deng, S. S. Gampala, J. M. Gendron, E. M. Jonassen, C. Lillo, A. DeLong, A. L. Burlingame, Y. Sun, and Z. Y. Wang. 2011. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol. 13, 124-131. 

  58. Vert, G. and J. Chory. 2006. Downstream nuclear events in brassinosteroid signalling. Nature 441, 96-100. 

  59. Vert, G., J. L. Nemhauser, N. Geldner, F. Hong, and J. Chory. 2005. Molecular mechanisms of steroid hormone signaling in plants. Ann. Rev. Cell Dev. Biol. 21, 177-201. 

  60. Wang, X. and J. Chory. 2006. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, form the plasma membrane. Science 313, 1118-1122. 

  61. Wang, X., M. B. Goshe, E. J. Soderblom, B. S. Phinney, J. A. Kuchar, J. Li, T. Asami, S. Yoshida, S. C. Huber, and S. D. Clouse. 2005a. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSTIVE1 receptor kinase. Plant Cell 17, 1685-1703. 

  62. Wang, X., U. Kota, K. He, K. Blackburn, J. Li, M.B. Goshe, S. C. Huber, and S. D. Clouse. 2008. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220-235. 

  63. Wang, X., X. Li, J. Meisenhelder, T. Hunter, S. Yoshida, T. Asami, and J. Chory. 2005b. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell 8, 855-865. 

  64. Wang, Z. Y., T. Nakano, J. Gendron, J. He, M. Chen, D. Vafeados, Y. Yang, S. Fujioka, S. T. Asami, and J. Chory. 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505-513. 

  65. White, R. and M. G. Parker. 1998. Molecular mechanisms of steroid hormone action. Endocrine-Related Cancer 5, 1-14. 

  66. Wu, D. and W. Pan. 2010, GSK3: multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161-168. 

  67. Wu, G., X. Wang, X. Li, Y. Kamiya, M. S. Otegui, and J. Chory. 2011. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci. Signal. 4, ra29. 

  68. Yang, C. J., C. Zhang, Y. N. Lu, J. Q. Jin, and X. L. Wang. 2011. The mechanism of Brassinosteroids' Action, From signal transduction to plant development. Mol. Plant doi, 10.1093/mp/ssr020. 

  69. Ye, H., L. Li, and Y. Yin. 2011. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathway. J. Integr. Plant Biol. 53, 455-468. 

  70. Yin, Y., D. Vafeados, Y. Tao, T. Yokoda, T. Asami, and J. Chory. 2005. A new class of transcription factors mediate brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249-259. 

  71. Yin, Y., Z. Y. Wang, S. Mora-Garcia, J. Li, S. Yoshida, T. Asami, and J. Chory. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181-191. 

  72. Yun, H. S., Y. H. Bae, Y. J. Lee, S. C. Chang, and S. K. Kim. 2009. Analysis of phosphorylation of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol. Cell 27, 183-190. 

  73. Zhou, A., H. Wang, J. C. Walker, and J. Li. 2004. BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J. 40, 399-409. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로