$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한우에 있어서 유전체 육종가 추정
Prediction of genomic breeding values of carcass traits using whole genome SNP data in Hanwoo (Korean cattle) 원문보기

농업과학연구 = CNU Journal of agricultural science, v.39 no.3, 2012년, pp.357 - 364  

이승환 (국립축산과학원) ,  김형철 (국립축산과학원) ,  임다정 (국립축산과학원) ,  당창권 (국립축산과학원) ,  조용민 (국립축산과학원) ,  김시동 (국립축산과학원) ,  이학교 (한경대학교 동물소재공학과) ,  이준헌 (충남대학교 동물자원생명과학과) ,  양보석 (국립축산과학원) ,  오성종 (제주대학교 동물생명공학과) ,  홍성구 (국립축산과학원) ,  장원경 (국립축산과학원)

Abstract AI-Helper 아이콘AI-Helper

Genomic breeding value (GEBV) has recently become available in the beef cattle industry. Genomic selection methods are exceptionally valuable for selecting traits, such as marbling, that are difficult to measure until later in life. One method to utilize information from sparse marker panels is the ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • (2008) recently proposed a method to simultaneously analyze whole genome SNP data for association with phenotypes to predict unobserved phenotypes. For prediction of unobserved phenotypes, they applied model selection using RJMCMC to predict genetic value, and the accuracies of unobserved phenotype prediction were higher than for single marker regression. Therefore, the accuracy of the predicted genomic breeding value in our current study suggests that Bayesian model selection using RJMCMC estimates a precise QTL effect for quantitative traits without suffering from the multiple testing problems that commonly occur in the least squares method.
  • We predicted the BLUP breeding value for the 266 genotyped animals using a numeric relation matrix (NRM) based on pedigree and phenotype from the national progeny test population. For the genomic breeding value, the prediction was performed from a multiple regression analysis using previously selected SNPs from the single SNP analyses with Bayesian model selection (RJMCMC; Fig. 1). To determined how well we predicted GEBV, we used the full set of data for estimation (n=266) and randomly selected animals for prediction and validation (n=100).
  • Genomic DNA for genotyping assays was extracted from blood samples, and SNP genotyping was performed by SeoLin Bioscience (Seoul, Korea) using the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP array. Three hundred steers were genotyped for 8,344 SNP, but 34 steers failed to genotype due to low DNA quality from phenol and chloroform contamination.
  • We fitted a linear mixed model with multiple SNPs as the fixed effect and a polygenic effect to account for additive genetic effects not detected by the SNPs. In the additive genetic model, the observations were a linear function of fixed effect, a polygenic term representing the sum of unidentified additive genetic effects, the additive effects due to SNPs associated with QTL and residuals. The linear model can be written as
  • (2007) is that the data simulating the single marker had very high LD with the QTL, thus the haplotypes accounted for noise in estimating QTL. In this study, single marker regression analysis provides a broad confidence interval compared to the multiple SNP model due to linkage disequilibrium between the QTL and multiple SNPs. In conclusion, a multiple SNP model using RJMCMC estimates a precise QTL position and shows far better accuracy of prediction for genomic breeding value.
  • In this study, we attempt to identify QTLs associated with carcass traits and applied this information to predict genomic breeding value with whole genome SNP data in Hanwoo cattle. For the whole genome SNP data, a total of 4,525 SNPs were used for estimation of genomic breeding value for carcass traits in the Hanwoo population.
  • Crude protein (CP) and total digestible nutrients (TDN) of the concentrate were 14-16 and 68-70%, 11-13 and 71-73% and 11% and 72-73% for the growth period, finishing period I and finishing period II, respectively. Phenotypic data in this study included carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT) and marbling score (MAR). BFT, EMA and MAR were measured at the 12th-13th rib junction after a 24 hour chill.
  • 1. Posterior density of association of SNPs for MAR (B), BF (D), CWT (F) and EMA (H) using the whole genome approach or likelihood ratio of single SNP regression (A, C, E and G) for 4 carcass traits.
  • To test the association between SNP and QTL, single marker regression analysis was implemented. Markers were assumed to be in LD with QTL in close proximity, and the evaluated effect was additive (QTL allele substitution effect).

대상 데이터

  • Carcass data and DNA samples were obtained from 266 Hanwoo descending from 66 sires and unrelated dams (2 - 10 progeny number per sire) from two NIAS experimental stations, Dae-Kwan-Ryoung and Nam-Won. The steers received ad libitum intake of a total mixed diet of concentrate and rice straw in total feed with a ratio of approximately 1.

이론/모형

  • Table 3. Detection of significant SNPs from single marker regression with varying threshold to select significant SNPs and multiple SNPs (RJMCMC method).
  • Genotypes were tested for Hardy-Weinberg equilibrium (HWE) to identify possible genotyping errors using the Chi-square test in the R/SNPassoc Package (R Development Core Team). SNPs with HWE (p<0.
  • In this study, we applied a Bayesian model selection termed the Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate genomic breeding values for individual Hanwoo using whole genome SNP data.
본문요약 정보가 도움이 되었나요?

참고문헌 (12)

  1. Fernando RL, Grossman M. 1989. Marker assisted selection using best linear unbiased prediction. Genetic Selection Evolution 21: 467-477. 

  2. Fernando RL, Garrick, DJ. 2008. GenSel-User manual for a portfolio of genomic selection related analyses. Animal Breeding and Genetics, Iowa State University, Ames. http://taurus.ansci.iastate.edu/gensel Accessed Apr. 21, 2009. 

  3. Goddard ME, Hayes, BJ. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programs. Nature Review Genetics 10:381-391 

  4. Grapes L, Dekkers JCM, Rothschild MF, Fernando RL. 2004. Comparing linkage disequilibrium-based methods for fine mapping quantitative trait loci. Genetics 166:1561-1570. 

  5. Habier D, Fernando RL, Dekkers JCM. 2007 The impact of genetic relationship information on genome-assisted breeding values. Genetics 177: 2389-2397. 

  6. Hayes BJ, Chamberlain AC, McPartlan H, McLeod I, Sethuraman L, Goddard ME. 2007. Accuracy of marker assisted selection with single markers and marker haplotypes in cattle. Genetical Research 89: 215-220. 

  7. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Diary Science 92:433-443. 

  8. Lande R, Thompson, R. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124, 743-756. 

  9. Lee SH, Van der Werf JHJ, Hayes BJ, Goddard ME, Visscher PM. 2008. Predicting Unobserved Phenotypes for Complex Traits from Whole-Genome SNP Data. PLoS Genetics 4: e1000231. 

  10. Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157: 1819-1829. 

  11. VanRaden PM, Van Tassel CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS. 2009. Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science 92:16-24. 

  12. Zhao HH, Fernando RL, Dekkers JCM. 2007. Power and Precision of Alternate Methods for Linkage Disequilibrium Mapping of Quantitative Trait Loci. Genetics 175: 1975-1986. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로