$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Review of Microwave Assisted Manufacturing Technologies

International journal of precision engineering and manufacturing, v.13 no.12, 2012년, pp.2263 - 2272  

Kim, Jaehwan (Department of Mechanical Engineering, Inha University) ,  Mun, Seong Cheo (Department of Mechanical Engineering, Inha University) ,  Ko, Hyun-U (Department of Mechanical Engineering, Inha University) ,  Kim, Ki-Baek (Department of Mechanical Engineering, Inha University) ,  Khondoker, Mohammad Abu Hasan (Department of Mechanical Engineering, Inha University) ,  Zhai, Lindong (Department of Mechanical Engineering, Inha University)

Abstract AI-Helper 아이콘AI-Helper

This paper reviews recent advancement of microwave (MW) assisted manufacturing technologies. Because MW energy interacts with materials in unique ways, MW assisted manufacturing technologies have the potential to develop entirely new or enhanced manufactured products and materials as well as new app...

주제어

참고문헌 (68)

  1. 10.1007/978-3-540-32944-2 Willert-Porada, M. (Ed.), “Advances in Microwave and Radio Frequency Processing,” Springer, 2006. 

  2. Chem. Mater. K. J. Rao 11 882 1999 10.1021/cm9803859 Rao, K. J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P. A., “Synthesis of inorganic solids using microwaves,” Chem. Mater., Vol. 11, pp. 882-895, 1999. 

  3. J. Hard Mater. J. G. P. Binner 4 177 1995 Binner, J. G. P. and Cross, T. E., “Applications for Microwave Heating in Ceramic Sintering: Challenges and Opportunities,” J. Hard Mater., Vol. 4, pp. 177-185, 1995. 

  4. Current Opinion in Solid State & Materials Science D. K. Agrawal 3 480 1998 10.1016/S1359-0286(98)80011-9 Agrawal, D. K., “Microwave processing of ceramics,” Current Opinion in Solid State & Materials Science, Vol. 3, pp. 480-485, 1998. 

  5. Materials Research Society Proceedings C. E. George 124 189 1988 10.1557/PROC-124-189 George, C. E., Lightsey, G. R., and Wehr, A. G., “Microwave Processing of Polymers and Biomass Materials,” Materials Research Society Proceedings, Vol. 124, pp. 189-194, 1988. 

  6. J. of Materials Science J. Jacob 30 21 5321 1995 10.1007/BF00351541 Jacob, J., Chia, L. H. L., and Boey, F. Y. C., “Review-thermal and non-thermal interaction of microwave radiation with materials,” J. of Materials Science, Vol. 30, No. 21, pp. 5321-5327, 1995. 

  7. Minerals Engineering R. M. Kelly 8 11 1427 1995 10.1016/0892-6875(95)00106-Z Kelly, R. M. and Rowson, N. A., “Microwave reduction of oxidised ilmenite concentrates,” Minerals Engineering, Vol. 8, No. 11, pp. 1427-1438, 1995. 

  8. Int. J. of Hydrogen Energy S. Saremi-Yarahmadi 35 10155 2010 10.1016/j.ijhydene.2010.08.004 Saremi-Yarahmadi, S., Vaidhyanathan, B., and Upul Wijayantha, K. G., “Microwave-assisted low temperature fabrication of nanostructured a-Fe2O3 electrodes for solar-driven hydrogen generation,” Int. J. of Hydrogen Energy, Vol. 35, pp. 10155-10165, 2010. 

  9. J. Am. Ceram. Soc. Y. Li 92 2188 2009 10.1111/j.1551-2916.2009.03193.x Li, Y., Li, H., and Cao, R., “Facile fabrication of pure a-Fe2O3 nanoparticles via forced hydrolysis using microwave assisted esterification and their sensing property,” J. Am. Ceram. Soc., Vol. 92, pp. 2188-2191, 2009. 

  10. Mater. Res. Innov. J. Cheng 1 44 1997 10.1007/s100190050017 Cheng, J., Agrawal, D., Komarneni, S., Mathis, M., and Roy, R., “Microwave processing of WC-Co composites and ferroic titanates,” Mater. Res. Innov., Vol. 1, pp. 44-52, 1997. 

  11. Macromol. Rapid Commun. M. N. Nadagouda 28 465 2007 10.1002/marc.200600735 Nadagouda, M. N. and Varma, R. S., “Preparation of Novel Metallic and Bimetallic Cross-Linked Poly (vinyl alcohol) Nanocomposites under Microwave Irradiation,” Macromol. Rapid Commun., Vol. 28, pp. 465-472, 2007. 

  12. Materials Research Innovations D. Agrawal 14 1 3 2010 10.1179/143307510X12599329342926 Agrawal, D., “Latest global developments in microwave materials processing,” Materials Research Innovations, Vol. 14, No. 1, pp. 3-10, 2010. 

  13. Oda, S. J., “Microwave Remediation of Hazardous Waste: A Review, in: Beatty, R. L., Sutton, W. H., and Iskander, M. F., (eds.), Microwave Processing of Materials III,” Materials Research Society, Vol. 269, pp. 453-464, 1992. 

  14. Krause, R. T. and Helt, J. E., “Applications of Microwave Radiation in Environmental Remediation Technologies, Microwaves, in: Clark, D. E., Tinga, W. R., and Laia, J. R., (eds.), Theory and Application in Materials Processing,” Ceramic Transactions American Ceramic Society, Vol. 36, pp. 53-59, 1993. 

  15. Resources, Conservation and Recycling D. A. Jones 34 2 75 2002 10.1016/S0921-3449(01)00088-X Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., and Miles, N. J., “Microwave heating applications in environmental engineering-a review,” Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75-90, 2002. 

  16. Journal of Food Engineering M. E. Lucchesi 79 1079 2007 10.1016/j.jfoodeng.2006.03.029 Lucchesi, M. E., Smadja, J., Bradshaw, S., Louw, W., and Chemat, F., “Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil,” Journal of Food Engineering, Vol. 79, pp. 1079-1086, 2007. 

  17. Journal of Microwave Power and Electromagnetic Energy S. S. Chen 29 4 231 1994 10.1080/08327823.1994.11688251 Chen, S. S. and Spiro, M., “Study of Microwave Extraction of Essential Oil Constituent from Plant Materials,” Journal of Microwave Power and Electromagnetic Energy, Vol. 29, No. 4, pp. 231-241, 1994. 

  18. J. Japan Institute of Energy T. Mitani 90 881 2011 10.3775/jie.90.881 Mitani, T., Oyadomari, M., Suzuki, H., Yano, K., Shinohara, N., Tsumiya, T., Sego, H., and Watanabe, T., “A Feasibility Study on a Continuous-flow type Microwave Pretreatment System for Bioethanol Production from Woody Biomass,” J. Japan Institute of Energy, Vol. 90, pp. 881-885, 2011. 

  19. 10.2172/522719 Wicks, G. G., Clark, D. E., and Schulz, R. L., “Microwave Technology for Waste Management Applications: Treatment of Discarded Electronic Circuitry,” DOE Report, WSRC-MS-97-0299, 1997. 

  20. Pozar, D. M., “Microwave Engineering,” Addison-Wesley Publishing Co., 1993. 

  21. 10.21236/ADA211759 Rademacher, S. E. and Montgomery, N. D., “Base level management of radio frequency radiation protection program,” AFOEHL Report 89-023RC0111DRA, 1989. 

  22. IMA Journal of Applied Mathematics C. G. Reimbert 57 2 165 1996 10.1093/imamat/57.2.165 Reimbert, C. G., Minzoni, A. A., and Smyth, N. F., “Effect of radiation losses on hotspot formation and propagation in microwave heating,” IMA Journal of Applied Mathematics, Vol. 57, No. 2, pp. 165-179, 1996. 

  23. Int. J. Precis. Eng. Manuf. Y. Chen 12 3 573 2011 10.1007/s12541-011-0073-0 Chen, Y., Maniruzzaman, M., and Kim, J., “Soft-chemistry based fabrication of gallium nitride nanoparticles,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 3, pp. 573-576, 2011. 

  24. Sol. Energy Mater. Sol. Cells I. Zumeta 93 1728 2009 10.1016/j.solmat.2009.05.022 Zumeta, I., Ayllo’n, J. A., Gonzalez, B., Domenech, X., and Vigil, E., “TiO2 Films Obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact,” Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 1728-1732, 2009. 

  25. Unalan, H. E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W. I., and Amaratunga, G. A., “Rapid synthesis of Aligned zinc oxide nanowires,” Nanotechnology, Vol. 19, No. 25, Paper No. 255608, 2008. 

  26. Appl. Surf. Sci. L. Zajýckova 255 5421 2009 10.1016/j.apsusc.2008.09.003 Zajýckova, L., Synek, P., Jasek, O., Elias, M., David, B., Bursýk, B. J., Pizurova, N., Hanzlikova, R., and Lazar, L., “Synthesis of carbon nanotubes and iron oxide nanoparticles in MW plasma torch with Fe(CO)(5) in gas feed,” Appl. Surf. Sci., Vol. 255, pp. 5421-5424, 2009. 

  27. Acta Mater. S. W. Cao 57 7 2154 2009 10.1016/j.actamat.2009.01.009 Cao, S. W. and Zhu, Y. J., “Iron oxide hollow spheres: microwavehydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties,” Acta Mater., Vol. 57, No. 7, pp. 2154-2165, 2009. 

  28. Chem. Phys. Chem. G. A. Tompsett 7 296 2006 10.1002/cphc.200500449 Tompsett, G. A., Conner, W. C., and Yngvesson, K. S., “Microwave Synthesis of Nanoporous Materials,” Chem. Phys. Chem., Vol. 7, pp. 296-319, 2006. 

  29. J. Phys. Chem. Solids, Vol. J. G. Parsons 70 555 2009 10.1016/j.jpcs.2008.12.017 Parsons, J. G., Luna, C., Botez, C. E., Elizalde, J., and Gardea-Torresdey, J. L., “Microwave assisted synthesis of iron(iii) oxyhydroxides/oxides characterized using transmission electron microscopy, X-ray diffraction, and x-ray absorption spectroscopy,” J. Phys. Chem. Solids, Vol. 70, pp. 555-560, 2009. 

  30. J. Am. Ceram. Soc. J. Wang 89 6 1977 2006 10.1111/j.1551-2916.2006.00976.x Wang, J., Binner, J., Vaidhyanathan, B., Joomun, N., Kilner, J., Dimitrakis, G., and Cross, T. E., “Evidence for the Microwave Effect During Hybrid Sintering,” J. Am. Ceram. Soc., Vol. 89, No. 6, pp. 1977-1984, 2006. 

  31. Smart Mater. Struct. V. K. Varadan 11 4 610 2002 10.1088/0964-1726/11/4/318 Varadan, V. K. and Xie, J., “Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD,” Smart Mater. Struct., Vol. 11, No. 4, pp. 610-616, 2002. 

  32. Barmatz, M., Jackson, H., and Radtke, R., “Microwave technique for brazing materials,” US Patent No. 6054693, 2000. 

  33. Ripley, E. B., Eggleston, P. A., and White, T. L., “Direct Microwave Coupling to Metals at Elevated Temperatures, in: Folz, D. C., Booske, J. H., Clark, D. E., and Gerling, J. F., (Eds.), Microwave and radio frequency applications,” Proc. 3rd World Cong. on Microwave and radio frequency applications, p. 241, 2003. 

  34. Gedevanishvili, S., Agrawal, D., Roy, R., and Vaidhyanathan, B., “Microwave processing using highly absorbing powdered material layers,” US Patent No. 6512216, 2003. 

  35. Hwang, J.-Y., Huang, X., and Shi, S., “Steel Production with Microwave Assisted Electric Arc Furnace Technology, in: Han, Q., Ludtka, G. M., and Zhai, Q., (eds.), Materials processing under the influence of external fields,” TMS Publication, pp. 225-234, 2007. 

  36. Nagata, K., Ishizaki, K., Sato, M., Matsubara, A., Takayama, S., Motojima, O., Agrawal, D., and Roy, R., “A concept of microwave furnace for steel making in industry scale,” Proc. 11th Int. Conf. on Microwave and high frequency heating, pp. 87-90, 2007. 

  37. Nature R. Roy 399 668 1999 10.1038/21390 Roy, R., Agrawal, D. K., Cheng, J., and Gedevanishvilli, S., “Full Sintering of Powdered Metal Bodies in a Microwave Field,” Nature, Vol. 399, pp. 668-670, 1999. 

  38. Sci. Sinter. G. Sethi 35 49 2003 10.2298/SOS0302049S Sethi, G., Upadhyaya, A., Agrawal, D., and Roy, R., “Microwave and Conventional Sintering of Pre-mixed and Prealloyed Cu-12Sn Bronze,” Sci. Sinter., Vol. 35, pp. 49-65, 2003. 

  39. Takayama, S., Saiton, Y., Sato, M., Nagasaka, T., Muroga, T., and Ninomiya, Y., “Microwave sintering for metal powders in the air by non-thermal effect,” Proc. 9th Int. Conf. on Microwave and high frequency heating, pp. 369-372, 2003. 

  40. ISIJ International K. Ishizaki 46 10 1403 2006 10.2355/isijinternational.46.1403 Ishizaki, K., Nagata, K., and Hayashi, T., “Production of Pig Iron from Magnetite Ore-Coal Composite Pellets by Microwave Heating,” ISIJ International, Vol. 46, No. 10, pp. 1403-1409, 2006. 

  41. Crystal Growth & Design M. N. Nadagouda 7 4 686 2007 10.1021/cg060506e Nadagouda, M. N. and Varma, R. S., “Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties,” Crystal Growth & Design, Vol. 7, No. 4, pp. 686-690, 2007. 

  42. 10.1557/PROC-269-465 Dauerman, L., Windgasse, G., Zhu, N., and He, Y., “Microwave Treatment of Hazardous Wastes: Physical Chemical Mechanisms, in: Beatty, R. L., Sutton, W. H., and Iskander, M. F., (eds.), Microwave Processing of Materials III,” Materials Research Society, Vol. 269, pp. 465-469, 1992. 

  43. Oda, S. J., “Dielectric Processing of Hazardous Materials-Present and Future Opportunities, in: Iskander, M. F., Lauf, R. J., and Beatty, R. L., (eds.), Microwave Processing of Materials IV,” Materials Research Society, Vol. 347, pp. 371-382, 1994. 

  44. Ind. Eng., Chem., Res. H. Shang 44 6837 2005 10.1021/ie0500772 Shang, H., Snape, C. E., Kingman, S. W., and Robinson, J. P., “Treatment of Oil-Contaminated Drill Cuttings by Microwave Heating in a High-Power Single-Mode Cavity,” Ind. Eng., Chem., Res., Vol. 44, pp. 6837-6844, 2005. 

  45. Kingman, S., Robinson, J., Antonio, C., and Pereira, I., “Latest Developments in the Microwave Processing of Oil Contaminated Drill Cuttings,” Microwave Symposium Digest (MTT), pp. 1432-1435, 2010. 

  46. J. Microwave Power and Electromagnetic Energy D. Iordache 44 4 213 2010 10.1080/08327823.2010.11689790 Iordache, D., Niculae, D., and Hathazi, F. I., “Utilization of Microwave Energy for Decontamination of Oil Polluted Soils,” J. Microwave Power and Electromagnetic Energy, Vol. 44, No. 4, pp. 213-221, 2010. 

  47. Chem. Eng. Technol. U. Roland 34 10 1652 2011 10.1002/ceat.201100227 Roland, U., Holzer, F., Trommler, U., and Kopinke, F.-D., “Electrode Design for Soil Decontamination with Radio-Frequency Heating,” Chem. Eng. Technol., Vol. 34, No. 10, pp. 1652-1659, 2011. 

  48. Ind. Eng. Chem. Res. H. Shang 46 4811 2007 10.1021/ie070124l Shang, H., Kingman, S. W., Snape, C. E., and Robinson, J. P., “Reactors Effects on Microwave Decontamination of Oily Wastes in a Multimode Cavity,” Ind. Eng. Chem. Res., Vol. 46, pp. 4811-4818, 2007. 

  49. Int. J. Precis. Eng. Manuf. T. J. Ko 13 1 5 2012 10.1007/s12541-012-0001-y Ko, T. J. and Yoon, I. J., “Mill-Grinding with Electroplated Diamond Abrasives for Ceramic Cutting,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 1, pp. 5-10, 2012. 

  50. Ceramic Bulletin E. Jerby 82 35 2003 Jerby, E., Dikhtyar, V., and Aktushev, O., “Microwave Drill for Ceramics,” Ceramic Bulletin, Vol. 82, pp. 35-41, 2003. 

  51. Journal of Materials Processing Technology B. G. Kim 201 716 2008 10.1016/j.jmatprotec.2007.11.143 Kim, B. G. and Lee, D. G., “Development of microwave foaming method for phenolic insulation foams,” Journal of Materials Processing Technology, Vol. 201, pp. 716-719, 2008. 

  52. Journal of Materials Processing Technology K. Wu 212 1481 2012 10.1016/j.jmatprotec.2012.02.010 Wu, K., Park, H.-S., and Willert-Porada, M., “Pyrolysis of polyurethane by microwave hybrid heating for the processing of NiCr foams,” Journal of Materials Processing Technology, Vol. 212, pp. 1481-1487, 2012. 

  53. IEEE Transactions on Plasma Science L. Feher 32 73 2004 10.1109/TPS.2004.823983 Feher, L. and Thumm, M., “Microwave innovation for industrial composite fabrication: The HEPHAISTOS technology,” IEEE Transactions on Plasma Science, Vol. 32, pp. 73-79, 2004. 

  54. Microwave Power Components, http://microwaveprocessing.com/ 

  55. Pringle, J. A., “Microwave pyrolysis apparatus for waste tires,” US Patent No. 7101464, 2006. 

  56. Pringle, F., “Microwave-based recovery of hydrocarbon and fossil fuels,” US Patent Application No. 0131591 A1, 2007. 

  57. Int. J. Agric. and Biol. Eng. Y. Wang 4 1 1 2011 Wang, Y., Li, Y., Wang, S., Zhang, L., Gao, M., and Tang, J., “Review of dielectric drying of foods and agricultural products,” Int. J. Agric. and Biol. Eng., Vol. 4, No. 1, pp. 1-19, 2011. 

  58. IMS, Industrial Microwave Heating Systems, Morrisville, North Carolina, USA. 

  59. Carbohydrate Polymers J. Wang 80 84 2010 10.1016/j.carbpol.2009.10.073 Wang, J., Zhang, J., Zhao, B., Wang, X., Wu, Y., and Yao, J., “A comparison study on microwave-assisted extraction of Potentilla anserine L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation,” Carbohydrate Polymers, Vol. 80, pp. 84-93, 2010. 

  60. J. Sep. Sci. X. Fang 33 1147 2010 10.1002/jssc.200900726 Fang, X., Wang, J., Yu, X., Zhang, G., and Zhao, J., “Optimization of microwave-assisted extraction followed by RP-HPLC for the simultaneous determination of oleanolic acid and ursolic acid in the fruits of Chaenomeles sinensis,” J. Sep. Sci., Vol. 33, pp. 1147-1155, 2010. 

  61. SAIREM, www.asirem.com 

  62. Accounts of Chemical Research M. N. Nadagouda 44 7 469 2011 10.1021/ar1001457 Nadagouda, M. N., Speth, T. F., and Varma, R. S., “Microwave-Assisted Green Synthesis of Silver Nanostructures,” Accounts of Chemical Research, Vol. 44, No. 7, pp. 469-478, 2011. 

  63. Aldrichimica Acta B. L. Hayes 37 2 66 2004 Hayes, B. L., “Recent Advances in Microwave-Assisted Synthesis,” Aldrichimica Acta, Vol. 37, No. 2, pp. 66-76, 2004. 

  64. Current Opinion in Chemical Engineering R. S. Varma 1 123 2012 10.1016/j.coche.2011.12.002 Varma, R. S., “Greener approach to nanomaterials and their sustainable applications,” Current Opinion in Chemical Engineering, Vol. 1, pp. 123-128, 2012. 

  65. 10.1007/978-3-540-32944-2_19 Georghiou, G. E., Ehlers, R. A., Hallac, A., Malan, H., Papadakis, A. P., and Metaxas, A. C., “Finite Elements in the Simulation of Dielectric Heating Systems, in: Willert-Porada, M., (Ed.), Advances in Microwave and Radio Frequency Processing,” Springer, pp. 167-177, 2006. 

  66. IEEE Trans. Microwave Theory and Techniques R. A. Ehlers 51 3 718 2003 10.1109/TMTT.2003.808731 Ehlers, R. A. and Metaxas, A. C., “3-D FE Discontinuous Sheet for Microwave Heating,” IEEE Trans. Microwave Theory and Techniques, Vol. 51, No. 3, pp. 718-726, 2003. 

  67. Fukushima, J., Sato, M., and Nakamura, H., “Plasma Model for Energy Transformation Mechanism of Non-Thermal Microwave Effect,” Plasma and Fusion Research: Rapid Communications, Vol. 7, Paper No. 1206012, 2001. 

  68. Papageorgiou, L., Metaxas, A. C., and Georghiou, G. E., “Threedimensional numerical modeling of gas discharges at atmospheric pressure incorporating photoionization phenomena,” J. of Physics D: Appl. Phys., Vol. 44, No. 4, Paper No. 045203, 2011. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로