$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 영산강 하구둑 배수갑문 확장 후 시간 변화에 따른 저염수 거동 예측
The Prediction Of Low Salinity Water Behavior Caused By Tidal Gate Extension In Yeongsan-River Estuary 원문보기

환경영향평가 = Journal of environmental impact assessment, v.21 no.4, 2012년, pp.553 - 565  

권철휘 ((주)국토해양환경기술단) ,  권민선 ((주)국토해양환경기술단) ,  강훈 ((주)국토해양환경기술단) ,  장규상 (한국농어촌공사 농어촌연구원) ,  서정빈 (한국농어촌공사 농어촌연구원) ,  조광우 (한국환경정책평가연구원) ,  맹준호 (한국환경정책평가연구원)

초록
AI-Helper 아이콘AI-Helper

영산강 하구에서 담수유입에 따른 저염수의 거동을 파악하기 위하여 EFDC 모델을 수행하였다. 모델의 수행은 홍수기 배수갑문 확장 전 후로 나누어 수행하였으며, 모델의 마지막 담수유입시점으로부터 16일 후 해역이 준 정상상태에 도달하기까지 저염수의 확산양상을 시간 경과순으로 살펴보았다. 그 결과, 담수유입이 멈춘 후에 저염수는 방류시점으로부터 약 6시간 경과 후에 배수갑문 전면 해역으로부터 해측으로 최대의 확산을 보였으며, 약 2~7일 후 염분의 분포 양상은 담수가 유입되기 전으로 회복되는 경향을 보였다. 한편, 배수갑문을 확장하기 전보다 배수갑문을 확장한 후에 담수유입 후 해역이 준 정상상태에 도달하는 시간이 더욱 짧았는데, 이는 시간당 방류량의 증가가 난류혼합을 강하게 하고, 해측으로 더 멀리 확산된 저염수는 외해수에 의해 보다 쉽게 혼합되기 때문인 것으로 판단된다. 따라서, 본 해역에서 일정한 양의 담수가 유입되는 경우, 저염수의 확산은 시간당 방류량이 크고 방류지속시간이 짧을수록 해역이 준정상상태에 도달하는 시간이 더욱 짧아질 것으로 사료된다.

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Also, in order to take into account the Coriolis force caused by the rotation of the Earth, 34˚45’ north latitude (the central part of the calculated area) was entered.
  • In order to figure out the behavior of low salinity water caused by the freshwater inflow in the Yeongsan River Estuary, this study predicted the salinity distribution using the EFDC model and reviewed the results. Experiment was fulfill by divided to before and after tidal gate extension and investigated low salinity water expansion pattern until reaching to the quasistationary state after 0hour, 2 hours, 1 day, 2 days, 7 days, and 16 days passed up to 16days(45days after fulfilling model) in the state of no discharge from the last discharge time after 30days of model fulfillment.
  • In order to figure out the behavior of low salinity water caused by the freshwater inflow in the Yeongsan River Estuary, this study predicted the salinity distribution using the EFDC model and reviewed the results. Experiment was fulfill by divided to before and after tidal gate extension and investigated low salinity water expansion pattern until reaching to the quasistationary state after 0hour, 2 hours, 1 day, 2 days, 7 days, and 16 days passed up to 16days(45days after fulfilling model) in the state of no discharge from the last discharge time after 30days of model fulfillment.
  • 301, 321, and 342 (source: Korea Hydrographic and Oceanographic Administration) were used. The calculation was carried out every 4 seconds for 17 days, and after verification it was carried out for 45 days in order to figure out the behavior of low salinity water. The target sea area is the Yellow Sea that includes the Mokpo Port, Hwawon Peninsula, and Yeongam Peninsula, where tidal currents are dominant.
  • The experiment was carried out before and after the expansion of the tidal gate during the flood season and normal season. The volume of freshwater inflow was entered as shown in Table 1, based on 13 years’ worth of operation data of the tidal gate.
  • In the viewpoint, many researches on marine environment and ecology change of Yeongsan-river estuary were fulfilled but researches on the most basic low salinity water behavior influencing greatly the marine environment weren’t accomplished much. Therefore, the study, by using 3 dimensional hydromechanics model, EFDC, predicted range of low salinity expansion by fresh water inflow before and after tidal gate extension in a flood season when fresh water inflow is the most and investigated low salinity water behavior as time passed.
  • To check how well the hydrodynamic model had simulated the present state, the tidal current values of the model cells that corresponded with the location of the observed values were verified using the time series verification of the east-west and north-south velocity components. This is shown in Table 5.

대상 데이터

  • The calculation was carried out every 4 seconds for 17 days, and after verification it was carried out for 45 days in order to figure out the behavior of low salinity water. The target sea area is the Yellow Sea that includes the Mokpo Port, Hwawon Peninsula, and Yeongam Peninsula, where tidal currents are dominant. Therefore, for the tides along the open boundary, the harmonic constant from data published by the Korea Ocean Research and Development Institute was used: the amplitude and phase of M2, S2, K1, and O1 harmonic constituents were calculated for each of the 59 cells that make up the western boundary, and these values were then entered.

데이터처리

  • In order to quantitatively estimate the accuracy of the model’s results, the absolute relative error (ARE) and error were calculated for both the calculated and the observed results.

이론/모형

  • The EFDC (Environmental Fluid Dynamics Code) model was used to simulate the movement of seawater in the target waters and to predict the behavior of low salinity water. EFDC was developed by Virginia Institute of Marine Science (Hamrick, 1992) and is a multivariate, finite difference model that can simulate two-and three-dimensional movement of seawater and substances.
  • A 240-square-kilometer sea area that included the intertidal zone was set as the basic target area of the model. The calculation grid used by the model was Seagrid, which is based on the Curvilinear-orthogonal grid system. Horizontally, a Curvilinear-orthogonal grid with a mean deviation of 1.
본문요약 정보가 도움이 되었나요?

참고문헌 (13)

  1. Kang J.H., 1996, Environmental changes caused by the construction of an estuary dam and tide embankment in the Mokpo sea area, Journal of the Korean Society of Civil Engineers, 16, 611-619. (in Korean) 

  2. Kang J.H. and Im B.S., 1998, Changes in pollution diffusion patterns in the Mokpo sea area caused by the construction of tide embankment, Journal of the Korean Society of Civil Engineers, 18, 613-622. (in Korean) 

  3. Park R.H., Cho Y.G., Cho C., Seon Y.J. and Park G.Y., 2001, Seawater characteristics and circulation in the Yeongsan River Estuary in summer of 2000, Journal of the Korean Society of Oceanography, 6, 218-224. (in Korean) 

  4. Shin Young Sik, Seo Ho Young, Hyun Bong Gil, 2005, Effect of salinity change of sea water layer on size structure of primary producer and upper consumer, Journal of the Korean Society of Oceanography, the 10th, No. 2, 113-123. 

  5. Lee S.W., 1994, Changes in tidal level in Mokpo Port caused by the construction of the Yeongsan River Estuary Dam, Journal of the Korea Port and Harbor Association, 18, 27-37. (in Korean) 

  6. Lee Jung Woo, Shin Seong Ho, 1991, Numerical experiment on tide change by large-scale reclaimed land development, the 5th, No. 2, 65-75. 

  7. Lim Hyun Sik, Seo Chong Hyun, 2011, Change before and after 10 years of zoobenthos group structure of the Yeongsan River Estuary, Journal of the Korean Society of Oceanography, the 16th, No. 4, 254-267. 

  8. Cho Eun Seop, 2010, Water quality of coastal area of Mokpo Port and characteristics of phytoplankton change, Collection of dissertations of conference of Marine Environment Safety Society, 251-252. 

  9. Choi B.H., 1984, Changes in tidal level caused by the construction of tide embankment in the Yeongsan River Estuary, Journal of the Korean Society of Civil Engineers, 4, 113-124. (in Korean) 

  10. George L. Mellor, Tetsuji Yamada, 1982, Development of a Turbulence Closure Model for Geophysical Fluid Problems, Reviews of geophysics and space physics, 20, 851-875. 

  11. B. Galperin, A. Rosati, L.H. Kantha and G.L. Mellor, Modeling Rotating Stratified Turbulent Flows with Application to Oceanic Mixed Layers. 

  12. Fischer HB, List EJ, Koh RCY, Imberger J, Brooks NH, 1979, Mixing in inland and coastal waters. Academic, New York 

  13. Hamrick JM, 1996, Users manual for the environmental fluid dynamic computer code. The college of William and Mary, Virginia Institute of Marine Science, Special Report 328, 224 pp 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로