$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides 원문보기

Journal of microbiology and biotechnology, v.22 no.3, 2012년, pp.400 - 406  

Lee, Jung-Yeol (Department of Environmental Engineering, Kyungpook National University) ,  Chen, Xue-Jiao (Department of Environmental Engineering, Kyungpook National University) ,  Lee, Eun-Jung (Department of Environmental Engineering, Kyungpook National University) ,  Min, Kyung-Sok (Department of Environmental Engineering, Kyungpook National University)

Abstract AI-Helper 아이콘AI-Helper

To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hyd...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Therefore, we examined hydrogen production by pure or co-cultures of dark- and photo-fermentation bacteria after investigating the effects of pH and carbon sources on the hydrogen production of each system in batch tests. An evaluation of a repeated fed-batch run of the co-culture system based on continuous hydrogen production and fermentation outlet composition was performed.
  • During acidogenic hydrogenesis of sugars, various kinds of metabolites are known to be generated along with evolved hydrogen [11]. In this study, the main metabolites of the dark-fermentation process were found to be acetic and butyric acids (Fig. 2), but other VFAs such as lactic and propionic acids were not detected by our analytical method. It is interesting to note that butyric acid was present at a very low concentration, below 700 mg/l, at pH 5.
  • sphaeroides. Then, acetate or glucose was used as the sole carbon source for photo fermentation at pH 6.25 in order to investigate the effects of various substrates on hydrogen production. The photo-fermentation experiment was carried out under an illumination of 5,000 lux and 30℃ after the replacement of the gas phase in the reactor with argon [21].
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. Afgan, N. H. and M. G. Carvalho. 2004. Sustainability assessment of hydrogen energy systems. Int. J. Hydrogen Energy 29: 1327-1342. 

  2. Alalayah, W. M., M. S. Kalil, A. A. H. Kadhum, J. M. Jahim, and N. M. Alauj. 2008. Hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Int. J. Hydrogen Energy 33: 7392-7396. 

  3. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton (Eds.) 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC. 

  4. Barbosa, M. J., J. M. S. Rocha, J. Tramper, and R. H. Wifjjels. 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechnol. 85: 25-33. 

  5. Brosseau, J. D. and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. J. Chem. Technol. Biotechnol. 32: 496-502. 

  6. Chen, C. C., C. Y. Lin, and J. S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 57: 56-64. 

  7. Demirel, B., P. Scherer, O. Yenigun, and T. T. Onay. 2010. Production of methane and hydrogen from biomass through conventional and high-rate anaerobic digestion processes. Crit. Rev. Environ. Sci. Technol. 40: 116-146. 

  8. Fang, H. H. P. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93. 

  9. Fang, H. H. P., H. Zhu, and T. Zhang. 2006. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrogen Energy 31: 2223-2230. 

  10. Fascetti, E., E. D'Addario, O. Todini, and A. Robertiello. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int. J. Hydrogen Energy 23: 753-760. 

  11. Jo, J. H., D. S. Lee, D. Park, and J. M. Park. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresour. Technol. 99: 6666-6672. 

  12. Kapdan, I. K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582. 

  13. Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29: 685-695. 

  14. Kim, J. O., Y. H. Kim, J. Y. Ryu, B. K. Song, I. H. Kim, and S. H. Yeom. 2005. Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochem. 40: 1331-1337. 

  15. Manish, S. and R. Banerjee. 2008. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy 33: 279-286. 

  16. Odom, J. M. and J. D. Wall. 1983. Photoproduction of $H_2$ from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol. 45: 1300-1305. 

  17. Shi, X. Y. and H. Q. Yu. 2006. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int. J. Hydrogen Energy 31: 1641-1647. 

  18. Taguchi, F., N. Mizukami, T. Saito-Taki, and K. Hasegawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2. Can. J. Microbiol. 41: 536-540. 

  19. Uyar, B., I. Eroglu, M. Yucel, and U. Gunduz. 2009. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int. J. Hydrogen Energy 34: 4517-4523. 

  20. Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum grown under a self-generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26. 

  21. Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki. 1998. $H_2$ production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20: 895-899. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로