$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of Clostridium butyricum Supplementation on in vitro Rumen Fermentation and Microbiota With High Grain Substrate Varying With Media pH Levels 원문보기

Frontiers in microbiology, v.13, 2022년, pp.912042 -   

Jiao, Peixin (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Wang, Ziwei (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Wang, Xin (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Zuo, Yanan (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Yang, Yuqing (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Hu, Guanghui (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Lu, Changming (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Xie, Xiaolai (College of Animal Science and Technology, Northeast Agricultural University , Harbin , China) ,  Wang, Li (Hubei Greensnow Biological Techn) ,  Yang, Wenzhu

Abstract AI-Helper 아이콘AI-Helper

Clostridium butyricum (C. butyricum) can survive at low pH, and it has been widely used as an alternative to antibiotics for the improvement of feed efficiency and animal health in monogastrics. A recent study suggested that the improved ruminal fermentation with supplementing C. butyricum is may be...

주제어

참고문헌 (51)

  1. Amat S. Holman D. B. Schmidt K. Menezes A. C. B. Baumgaertner F. Winders T. . ( 2021 ). The nasopharyngeal, ruminal, and vaginal microbiota and the core taxa shared across these microbiomes in virgin yearling heifers exposed to divergent in utero nutrition during their first trimester of gestation and in pregnant beef heifers in response to mineral supplementation . Microorganisms 9 , 2011 . 10.3390/microorganisms9102011 34683332 

  2. AOAC . ( 2005 ). Official Methods of Analysis, 16th ed . Washington, DC : Association of Analytical Chemists (AOAC) . 

  3. Araki Y. Andoh A. Fujiyama Y. Takizawa J. Takizawa W. Bamba T. ( 2002 ). Oral administration of a product derived from Clostridium butyricum in rats . Int. J. Mol. Med . 9, 53. 10.3892/ijmm.9.1.53 12964036 

  4. Auffret M. D. Dewhurst R. J. Duthie C. Rooke J. A. Wallace R. J. Freeman T. C. . ( 2017 ). The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle . Microbiome 5 , 159 . 10.1186/s40168-017-0378-z 29228991 

  5. Bae J. S. Byun J. R. Yoon Y. H. ( 2003 ). In vivo antagonistic effect of Lactobacillus helveticus CU 631 against Salmonella enteritidis KU101 infection . Asian-Australas. J. Anim. Sci . 16 , 430 – 434 . 10.5713/ajas.2003.430 

  6. Ban Y. Guan L. L. ( 2021 ). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health . J. Anim. Sci. Biotechnol . 12 , 109 . 10.1186/s40104-021-00630-x 34635155 

  7. Broderick G. A. Kang J. H. ( 1980 ). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media . J. Dairy Sci . 63 , 64 – 75 . 10.3168/jds.S0022-0302(80)82888-8 7372898 

  8. Cai L. Hartanto R. Zhang J. Qi D. ( 2021 ). Clostridium butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo . Animals 11 , 3261 . 10.3390/ani11113261 34827993 

  9. Colombatto D. Hervas G. Yang W. Z. Beauchemin K. A. ( 2003 ). Effects of enzyme supplementation of a total mixed ration on microbial fermentation in continuous culture, maintained at high and low pH . J. Anim. Sci . 81 , 2617 – 2627 . 10.2527/2003.81102617x 14552391 

  10. Dai X. Tian Y. Li J. Luo Y. Liu D. Zheng H. . ( 2015 ). Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen . Appl. Environ. Microbiol . 81 , 1375 – 1386 . 10.1128/AEM.03682-14 25501482 

  11. Duan Y. F. Wang Y. Dong H. B. Ding X. Liu Q. S. Li H. . ( 2018 ). Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation . Front. Microbiol . 9 , 2191 . 10.3389/fmicb.2018.02191 30283419 

  12. Ebeid H. M. Mengwei L. Kholif A. E. Hassan F. Lijuan P. Xin L. . ( 2020 ). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations . Curr. Microbiol . 77 , 1271 – 1282 . 10.1007/s00284-020-01935-2 32130505 

  13. García-Martínez R. Ranilla M. J. Tejido M. L. Carro M. D. ( 2005 ). Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio . Br. J. Nutr . 94 , 71 – 77 . 10.1079/BJN20051455 16115335 

  14. Ghorbani G. R. Morgavi D. P. Beauchemin K. A. Leedle J. A. Z. ( 2002 ). Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, andthe microbial populations of feedlot cattle . J. Anim. Sci . 80 , 1977 – 1985 . 10.2527/2002.8071977x 12162668 

  15. He Z. X. He M. L. Walker N. D. McAllister T. A. Yang W. Z. ( 2014 ). Using a fibrolytic enzyme in barley-based diets containing wheat dried distillers grains with solubles: Ruminal fermentation, digestibility, and growth performance of feedlot steers . J. Anim. Sci . 92 , 3978 – 3987 . 10.2527/jas.2014-7707 24987082 

  16. Hinsu A. T. Tulsani N. J. Panchal K. J. Pandit R. J. Jyotsana B. Dafale N. A. . ( 2021 ). Characterizing rumen microbiota and CAZyme profile of Indian dromedary camel ( Camelus dromedarius ) in response to different roughages . Sci. Rep . 11 , 9400 . 10.1038/s41598-021-88943-9 33931716 

  17. Hoover W. H. Kincaid C. R. Varga G. A. Thayne W. V. Junkins L. L. Jr. ( 1984 ). Effects of solids and liquid flows of fermentation in continuous cultures. IV. pH and dilution rates . J. Anim. Sci . 58 , 692 – 699 . 10.2527/jas1984.583692x 

  18. Jami E. White B. A. Mizrahi I. ( 2013 ). Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency . PLoS One 9 , e85423 . 10.1371/journal.pone.0085423 24465556 

  19. Jiao P. Wei C. Sun Y. Xie X. Zhang Y. Wang S. . ( 2019 ). Screening of live yeast and yeast derivatives for their impact of strain and dose on in vitro ruminal fermentation and microbial profiles with varying media pH levels in high-forage beef cattle diet . J. Sci. Food Agric . 99 , 6751 – 6760 . 10.1002/jsfa.9957 31353469 

  20. Jiao P. X. He Z. X. Ding S. Walker N. D. Cong Y. Y. Liu F. Z. . ( 2018 ). Impact of strain and dose of live yeast and yeast derivatives on in vitro ruminal fermentation of a high-grain diet at two pH levels . Can. J. Anim. Sci . 98 , 477 – 487 . 10.1139/cjas-2017-0079 

  21. Jiao P. X. Liu F. Z. Beauchemin K. A. Yang W. Z. ( 2017 ). Impact of strain and dose of lactic acid bacteria on in vitro ruminal fermentation with varying media pH levels and feedsubstrates . Anim. Feed Sci. Technol . 224 , 1 – 13 . 10.1016/j.anifeedsci.2016.11.005 

  22. Juan Z. Zhao-Ling S. Ming-Hua Z. Chun W. Hai-Xia W. Meng-Yun L. . ( 2017 ). Oral administration of Clostridium butyricum CGMCC0313-1 reduces ovalbumin-induced allergic airway inflammation in mice . Respirology 22 , 898 – 904 . 10.1111/resp.12985 28122397 

  23. Khafipour E. Krause D. O. Plaizier J. C. ( 2009 ). Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation . J. Dairy Sci . 92 , 1712 – 1724 . 10.3168/jds.2008-1656 19307653 

  24. Kober A. K. M. H. Riaz Rajoka M. S. Mehwish H. M. Villena J. Kitazawa H. ( 2022 ). Immunomodulation potential of probiotics: a novel strategy for improving livestock health, immunity, and productivity . Microorganisms 10 , 388 . 10.3390/microorganisms10020388 35208843 

  25. Krehbiel C. R. Rust S. R. Zhang G. Gilliland S. E. ( 2003 ). Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action . J. Anim. Sci . 81 ( 14_suppl_2 ), E120 – E132 . 10.1093/qjmed/hcu189 25239761 

  26. Li Y. Wang Y. Lv J. Dou X. Zhang Y. ( 2021 ). Effects of dietary supplementation with Clostridium butyricum on the amelioration of growth performance, rumen fermentation, and rumen microbiota of holstein heifers . Front. Nutr . 8 , 763700 . 10.3389/fnut.2021.763700 34859032 

  27. Liu M. M. Guo W. Wu F. Qu Q. C. Tan Q. S. Gong W. B. ( 2017 ). Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp ( Ctenopharyngodon idellus ). Aquacult. Res . 48 , 4102 – 4111 . 10.1111/are.13230 

  28. McAllister T. A. Beauchemin K. A. Alazzeh A. Y. Baah J. Teather R. M. Stanford K. ( 2011 ). Review: the use of direct fed microbials to mitigate pathogensand enhance production in cattle . Can. J. Anim. Sci . 91 , 193 – 211 . 10.4141/cjas10047 

  29. Molnar A. Such N. Farkas V. Pal L. Menyhart L. Wagner L. . ( 2020 ). Effects of wheat bran and Clostridium butyricum supplementation on cecal microbiota, short-chain fatty acid concentration, pH and histomorphometry in broiler chickens . Animals 10 , 2230 . 10.3390/ani10122230 33261054 

  30. Ohashi Y. Ushida K. ( 2009 ). Health-beneficial effects of probiotics: Its mode of action . Anim. Sci. J . 80 , 361 – 371 . 10.1111/j.1740-0929.2009.00645.x 20163595 

  31. Ørskov E. R. McDonald I. ( 1979 ). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage . J. Agric. Sci . 92 , 499 – 503 . 10.1017/S0021859600063048 

  32. Paoli A. Mancin L. Bianco A. Thomas E. Mota J. F. Piccini F. ( 2019 ). Ketogenic diet and microbiota: friends or enemies? Genes 10 , 534 . 10.3390/genes10070534 31311141 

  33. Qiu X. Qin X. Chen L. Chen Z. Hao R. Zhang S. . ( 2022 ). Serum biochemical parameters, rumen fermentation, and rumen bacterial communities are partly driven by the breed and sex of cattle when fed high-grain diet . Microorganisms 10 , 323 . 10.3390/microorganisms10020323 35208778 

  34. Ramaswami N. Chaudhary L. C. Agarwal N. Kamra D. N. ( 2005 ). Effect of lactic acid producing bacteria on the performance of male crossbred calves fed roughage based diet . Asian-Australas. J. Anim. Sci . 18 , 1110 – 1115 . 10.5713/ajas.2005.1110 

  35. Romero-Perez A Beauchemin K. ( 2018 ). Estimating gas volume from headspace pressure in a batch culture system . Can. J. Anim. Sci . 98 , 593 – 596 . 10.1139/cjas-2017-0100 

  36. Russell J. B. Dombrowski D. B. ( 1980 ). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture . Appl. Environ. Microbiol . 39 , 606 – 610 . 10.1128/aem.39.3.604-610.1980 7387158 

  37. Russell J. B. Wilson D. B. ( 1996 ). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci . 79 , 1503 – 1509 . 10.3168/jds.S0022-0302(96)76510-4 8880476 

  38. Sawanon S. Koike S. Kobayashi Y. ( 2011 ). Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion . FEMS Microbiol. Lett . 325 , 170 – 179 . 10.1111/j.1574-6968.2011.02427.x 22092507 

  39. Su X. L. Tian Q. Zhang J. Yuan X. Z. Shi X. S. Guo R. B. . ( 2014 ). Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp . Int. J. Syst. Evol. Microbiol . 64 , 2986 – 2991 . 10.1099/ijs.0.063917-0 24899658 

  40. Trabi E. B. Seddik H. Xie F. Wang X. Liu J. Mao S. ( 2020 ). Effect of pelleted high-grain total mixed ration on rumen morphology, epithelium-associated microbiota and gene expression of proinflammatory cytokines and tight junction proteins in Hu sheep . Anim. Feed Sci. Technol . 263 , 114453 . 10.1016/j.anifeedsci.2020.114453 

  41. Van Soest P. J. Robertson J. B. Lewis B. A. ( 1991 ). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition . J. Dairy Sci . 74 , 3583 – 3597 . 10.3168/jds.S0022-0302(91)78551-2 1660498 

  42. Virgínio Júnior G. F. Silva A. P. D. Toledo A. F. D. Poczynek M. Cezar A. M. Montenegro H. . ( 2021 ). Ruminal and fecal bacteriome of dairy calves fed different levels and sources of NDF . Animals 11 , 2705 . 10.3390/ani11092705 34573671 

  43. Wang W. W. Wang J. Zhang H. J. Wu S. G. Qi G. H. ( 2020 ). Effects of Clostridium butyricum on production performance and intestinal absorption function of laying hens in the late phase of production . Anim. Feed Sci. Technol . 264 , 114476 . 10.1016/j.anifeedsci.2020.114476 

  44. Xie X. Yang C. Guan L. L. Wang J. Xue M. Liu J. X. ( 2018 ). Persistence of cellulolytic bacteria fibrobacter and treponema after short-term corn stoverbased dietary intervention reveals the potential to improve rumen fibrolytic function . Front. Microbiol . 9 , 1363 . 10.3389/fmicb.2018.01363 29997589 

  45. Xue M. Y. Sun H. Z. Wu X. H. Guan L. L. Liu J. X. ( 2019 ). Assessment of rumen bacteria in dairy cows with varied milk protein yield . J. Dairy Sci . 102 , 5031 – 5041 . 10.3168/jds.2018-15974 30981485 

  46. Yan X. T. Yan B. Y. Ren Q. M. Dou J. J. Wang W. W. Zhang J. J. . ( 2018 ). Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak . Anim. Feed Sci. Technol . 244 , 18 – 27 . 10.1016/j.anifeedsci.2018.07.016 

  47. Yang W. Z. Beauchemin K. A. Vedres D. D. ( 2002 ). Effects of pH and fibrolytic enzymes on digestibility, bacterial protein synthesis, and fermentation in continuous culture . Anim. Feed Sci. Technol . 102 , 137 – 150 . 10.1016/S0377-8401(02)00250-X 

  48. Yoon I. K. Stern M. D. ( 1995 ). Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: a review . Asian-Australas. J. Anim. Sci . 8 , 533 – 555 . 10.5713/ajas.1995.553 

  49. Zened A. Combes S. Cauquil L. Mariette J. Klopp C. Bouchez O. . ( 2013 ). Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets . FEMS Microbiol. Ecol . 83 , 504 – 514 . 10.1111/1574-6941.12011 22974422 

  50. Zhang G. Zhao J. Liu L. Zhang S. ( 2020 ). Effects of Clostridium butyricum and corn bran supplementation on growth performance, nutrient digestibility, faecal volatile fatty acids and microbiota in weaned pigs . J. Appl. Anim. Res . 48 , 313 – 319 . 10.1080/09712119.2020.1789646 

  51. Zhang J. Chen X. Liu P. Zhao J. Sun J. Guan W. . ( 2018 ). Dietary Clostridium butyricum induces a phased shift in fecal microbiota structure and increases the acetic acid-producing bacteria in a weaned piglet model . J. Agric. Food Chem . 66 , 5157 – 5166 . 10.1021/acs.jafc.8b01253 29683328 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로