$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술
Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion 원문보기

청정기술 = Clean technology, v.19 no.4, 2013년, pp.355 - 369  

김동진 (한림대학교 환경생명공학과.에너지환경연구소)

초록
AI-Helper 아이콘AI-Helper

재생 원료인 바이오매스를 이용한 에너지 생산에 있어서 경제성은 가장 중요한 인자 중 하나이다. 이러한 관점에서 슬러지 혐기소화에 의해 생산되는 바이오가스는 다른 바이오매스에 비해 매우 저렴하며 처분 비용 절감으로 얻는 이익이 부가적으로 발생하기 때문에 경제성이 매우 높다. 슬러지 혐기소화에서 기질의 가수분해 속도는 전체 소화 성능을 결정짓는 인자이며 혐기소화 속도를 향상시키기 위한 슬러지 전처리 기술이 많이 개발되었다. 슬러지 전처리는 생물학적, 열 가수분해, 초음파, 기계적 방법 등 다양한 기술이 실제 시설에 적용되었다. 전처리는 슬러지 가용화를 촉진하고 고형물을 감소시키면서 바이오가스 생산을 늘리는 등 혐기소화 효율을 향상시켰다. 본문에서는 전처리 방법의 기술적 특성을 소개하고 각 전처리 방법의 에너지 수지와 경제성을 비교하여 적절한 전처리 기술을 선정하기 위한 기준을 마련하고자 하였다. 조사 결과 고온 혐기소화와 열 가수분해가 가장 경제성이 높고 다음으로 Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, 초음파의 순서로 평가되었다. 경제성 평가에 있어서 슬러지의 최종 처분 비용이 가장 큰 요소가 되며 따라서 최종 처분 슬러지의 수분 함량이 경제성 평가에 결정적인 역할을 하였다.

Abstract AI-Helper 아이콘AI-Helper

Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. S...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
곡물계 바이오매스의 문제점은? 바이오매스를 이용한 바이오연료의 경우 원료 가격이 상당히 중요한 부분을 차지하는데 특히 생화학적 전환이 용이한 곡물계 바이오매스의 경우 식량으로도 이용되기 때문에 원료의 가격 부담이 매우 큰 편이다. 세계적으로 기아 문제가 여전히 심각한 상태에서 연료를 만들기 위해 곡물을 사용한다던가, 이로 인해 곡물 가격이 상승하여 절대 빈곤층의 식비 부담이 늘어나는 등의 도덕적 문제가 제기되고 있는 것이 사실이다. 또한 목질계 바이오매스의 경우 곡물에 비해 원료 단가가 낮지만 바이오 연료로 전환하는데 기술적인 어려움이 많은 것이 현실이다.
바이오매스의 특징은? 한편, 앞의 노력 외에 연료나 화학물질의 원료로도 이용할 수 있는 바이오매스(biomass)를 이용한 연료 개발도 매우 다양하게 진행되고 있다. 바이오매스는 식물이나 미생물로 주로 구성되고 이를 생화학적, 물리적 변환 과정을 통해 바이오디젤, 바이오에탄올, 바이오가스 등의 바이오연료로 생산하는 기술이 상업화되어 있다.
혐기소화의 단점은? 혐기소화는 슬러지의 감량과 안정화, 병원균 사멸, 그리고 에너지원으로 메탄을 얻는 장점이 있다. 그러나 한편으로 긴 슬러지 체류시간(20~30일)으로 인한 대규모 시설투자비, 낮은 유기물 분해 효율(30~50%)로 제약을 받는데 이는 주로 율속 단계인 가수분해에 기인한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (99)

  1. http://attfile.konetic.or.kr/konetic/xml/market/51A1A0720223.pdf 

  2. Gujer, W., and Zehnder, A. J. B., "Conversion Processes in Anaerobic Digestion," Water Sci. Technol., 15(8-9), 127-167 (1983). 

  3. Parkin, J. F., and Owen, W. F., "Fundamentals of Anaerobic Digestion of Wastewater Sludge," J. Environ. Eng. Div. Amer. Soc. Civil Eng., 122, 867-920 (1986). 

  4. http://en.wikipedia.org/wiki/Anaerobic_digestion 

  5. Appels, L., Baeyens, J., Degreve, J., and Dewil, R., "Principles and Potential of the Anaerobic Digestion of Waste-activated Sludge," Prog. Energy Combust. Sci., 34, 755-781 (2008). 

  6. Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgene, J. P., Steyer, J. P., and Ferrer, I., "Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review," J. Hazard. Mat., 183, 1-15 (2010). 

  7. Rudolfs, W., and Heukelelian, H., "Thermophilic Digestion of Sewage Sludge Solids. I.-Preliminary Paper," Ind. Eng. Chem., 22, 96-99 (1930). 

  8. Roberts, R., Son, L., Davies, W. J., and Forster, C. F., "Two Stage, Thermophilic/Mesophilic Anaerobic Digestion of Sewage Sludge," Trans. Chem., 77(B), 93-97 (1999). 

  9. Oles, J., Dichtl, N., and Niehoff, H. H., "Full Scale Experience of Two Stage Thermophilic/Mesophilic Sludge Digestion," Water Sci. Technol., 36(6-7), 449-456 (1997). 

  10. Aoki, N., and Kawase, M., "Development of High-performance Thermophilic Two Phase Digestion Process," Water Sci. Technol., 23, 1147-1156 (1991). 

  11. Ferrer, I., Vazquez, F., and Font, X., "Long Term Operation of a Thermophilic Anaerobic Reactor: Process Stability and Efficiency at Decreasing Sludge Retention Time," Biores. Technol., 101, 2972-2980 (2010). 

  12. Song, Y. C., Kwon, S. J., and Woo, J. H., "Mesophilic and Thermophilic Temperature Co-phase Anaerobic Digestion Compared with Single Stage Mesophilic and Thermophilic Digestion of Sewage Sludge," Water Res., 38, 1653-1662(2004). 

  13. Ponsa, S., Ferrer, I., Vazquez, F., and Font, X., "Optimization of the Hydrolytic Acidogenic Anaerobic Digestion Stage ( $55^{\circ}C$ ) of Sewage Sludge: Influence of pH and Solid Content," Water Res., 42, 3972-3980 (2008). 

  14. Ge, H., Jensen, P. D., and Batstone, D. J., "Pre-treatment Mechanisms during Thermophilic-mesophilic Temperature Phased Anaerobic Digestion of Primary Sludge," Water Res., 44, 123-130 (2010). 

  15. Cabirol, N., Oropeza, M. R., and Noyola, A., "Removal of Helminth Eggs, and Fecal Coliforms by Anaerobic Thermophilic Sludge Digestion," Water Sci. Technol., 45(10), 269-274 (2002). 

  16. De Leon, C., and Jenkins, D., "Removal of Fecal Coliforms by Thermophilic Anaerobic Digestion," Water Sci. Technol., 46(10), 147-152 (2002). 

  17. Hartmann, H., and Ahring, B. K., "A Novel Process Configuration for Anaerobic Digestion of Source-sorted Household Waste Using Hyper-thermophilic Posttreatment," Biotechnol. Bioeng., 90, 830-837 (2005). 

  18. Lu, J. Q., Gavala, H. N., Skiadas, I. V., Mladenovska, Z., and Ahring, B. K., "Improving Anaerobic Sewage Sludge Digestion by Implementation of a Hyper-thermophilic Prehydrolysis Step," J. Environ. Manage., 88, 881-889 (2008). 

  19. Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., and Ahring, B. K., "Mesophilic and Thermophilic Anaerobic Digestion of Primary and Secondary Sludge," Effect of Pretreatment at Elevated Temperature," Water Res., 37, 4561-4572 (2003). 

  20. Climent, M., Ferrer, I., Baeza, M. D., Artola, A., Vazquez, F., and Font, X., "Effects of Thermal and Mechanical Pretreatments of Secondary Sludge on Biogas Production under Thermophilic Conditions," Chem. Eng. J., 133, 335-342 (2007). 

  21. Bolzonella, D., Pavan, P., Zanette, M., and Cecchi, F., "Twophase Anaerobic Digestion of Waste Activated Sludge: Effect of an Extreme Thermophilic Prefermentation," Ind. Eng. Chem. Res., 46, 6650-6655 (2007). 

  22. Ferrer, I., Ponsa, S., Vazquez, F., and Font, X., "Increasing Biogas Production by Thermal ( $70^{\circ}C$ ) Sludge Pre-treatment prior to Thermophilic Anaerobic Digestion," Biochem. Eng. J., 42, 186-192 (2008). 

  23. Ferrer, I., Serrano, E., Ponsa, S., Vazquez, F., and Font, X., "Enhancement of Thermophilic Anaerobic Sludge Digestion by $70^{\circ}C$ Pre-treatment: Energy Considerations," J. Residuals Sci. Technol., 6, 11-18 (2009). 

  24. Schafer P., Farrell J., Newman, G., and Vandenburgh S., "Advanced Anaerobic Digestion Performance Comparisons," WEFTEC 2002, Sep. 29, Chicago, IL, (2002). 

  25. Borja, R., Banks, C. J., and Garrido, A., "Kinetics of Blackolive Wastewater Treatment by the Active Sludge System," Process Biochem., 29, 587-593 (1994). 

  26. Subramanian, S., Kumar, N., Murthy, S., and Novak, J. T., "Effect of Anaerobic Digestion and Anaerobic/Aerobic Digestion Processes on Sludge Dewatering," J. Residuals Sci. Technol., 4, 17-23 (2007). 

  27. Shiota, N., Akashi, A., and Hasegawa, S., "A Strategy in Wastewater Treatment Process for Significant Reduction of Excess Sludge Production," Water Sci. Technol., 45, 127-134 (2002). 

  28. Hasegawa, S., Shiota, N., Katsura, K., and Akashi, A., "Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion," Water Sci. Technol., 41, 163-169 (2000). 

  29. Sakai, Y., Aoyagi, T., Shiota, N., Akashi, A., and Hasegawa, S., "Complete Ddecomposition of Biological Waste Sludge by Thermophilic Aerobic Bacteria," Water Sci. Technol., 42, 81-88 (2000). 

  30. Dumas, C., Perez, S., Paul, E., and Lefebvre, X., "Combined Thermophilic Aerobic Process and Conventional Anaerobic Digestion: Effect on Sludge Biodegradation and Methane Production," Bioresour. Technol., 101, 2629-2636 (2010). 

  31. Deleris, S., Larose, A., Geaugey, V., and Lebrun, T., "Innovative Strategies for the Reduction of Sludge Production in Activated Sludge Plant: $BIOLYSIS^{(R)}$ O and $BIOLYSIS^{(R)}$ E," in IWA International Conference on Biosolids 2003, Water Sludge as a Resource, Jun. 23-25, Trondheim, Norway, (2003). 

  32. Tanaka, S., Kobayashi, T., Kamiyama, K. I., and Bildan, L. N. S., "Effects of Thermochemical Pretreatment on the Anaerobic Digestion of Waste Activated Sludge," Water Sci. Technol., 35, 209-215 (1997). 

  33. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., and Lee, J., "Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge," J. Biosci. Bioeng., 95, 271-275 (2003). 

  34. Valo, A., Carrere, H., and Delgenes, J. P., "Thermal, Chemical and Thermo-chemical Pretreatment of Waste Activated Sludge for Anaerobic Digestion," J. Chem. Technol. Biotechnol., 79, 1197-1203 (2004). 

  35. Mouneimne, A. H., Carrere, H., Bernet, N., and Delgenes, J. P., "Effect of Saponification on the Anaerobic Digestion of Solid Fatty Residues," Bioresour. Technol., 90, 89-94 (2003). 

  36. Everret, J. G., "The Effect of pH on the Heat Treatment of Sewage Sludges," Water Res., 8, 899-906 (1974). 

  37. Heo, N. H., Park, S. C., and Lee, J. S., "Single-stage Anaerobic Codigestion for Mixture Wastes of Simulated Korean Food Waste and Waste Activated Sludge," Appl. Biochem. Biotechnol., 105, 567-579 (2003). 

  38. Jolly, M., and Gillard, J., "The Economics of Advanced Digestion," 14th European Biosolids and Organic Resources Conference and Exhibition, Nov. 9-11, Leeds, UK, (2009). 

  39. Crawford, G., and Sandino, J., Energy Efficiency in Wastewater Treatment in North America: a Compendium of Best Practices and Case Studies of Novel Approaches, IWA Publishing, London, 2010, pp. 3-14-3-19. 

  40. Yasui, H., and Shibata, M., "An Innovative Approach to Reduce Excess Sludge Production in the Activated Sludge Ppocess," Water Sci. Technol., 30(9), 11-20 (1994). 

  41. Sakai, Y., Fukasu, T., Yasui, H., and Shibata, M., "An Activated Sludge Process without Excess Sludge Production," Water Sci. Technol., 36(11), 163-170 (1997). 

  42. Chu, L. B., Yan, S. T., Xing, X. H., Sun, X. L., and Jurcik, B., "Progress and Perspectives of Sludge Ozonation as a Powerful Pretreatment Method for Minimization of Excess Sludge Production," Water Res., 43, 1811-1822 (2009). 

  43. Weemaes, M., Grootaerd, H., Simoens, F., and Verstraete, W., "Anaerobic Digestion of Ozonized Biosolids," Water Res., 34, 2330-2336 (2000). 

  44. Yeom, I. T., Lee, K. R., Lee, Y. H., Ahn, K. H., and Lee, S. H., "Effects of Ozone Treatment on the Biodegradability of Sludge from Municipal Wastewater Treatment Plants," Water Sci. Technol., 46(4-5), 421-425 (2002). 

  45. Goel, R., Tokutomi, T., Yasui, H., and Noike, T., "Optimal Process Configuration for Anaerobic Digestion with Ozonation," Water Sci. Technol., 48(4), 85-96 (2003). 

  46. Battimelli, A., Millet, C., Delgenes, J. P., and Moletta, R., "Anaerobic Digestion of Waste Activated Sludge Combined with Ozone Post-treatment and Recycling," Water Sci. Technol., 48(4), 61-68 (2003). 

  47. Bougrier, C., Battimelli, A., Delgenes, J. P., and Carrere, H., "Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment," Ozone-Sci. Eng., 29, 201-206 (2007). 

  48. Rivero, J. A. C., Madhavan, N., Suidan, M. T., Ginestet, P., and Audic, J. M., "Enhancement of Anaerobic Digestion of Excess Municipal Sludge with Thermal and/or Oxidative Treatment," J. Environ. Eng. ASCE, 132, 638-644 (2006). 

  49. Song, J. J., Takeda, N., and Hiraoka, M., "Anaerobic Treatment of Sewage Treated by Catalytic Wet Oxidation Process in Upflow Anaerobic Blanket Reactors," Water Sci. Technol., 26(3-4), 867-875 (1992). 

  50. Barlindhaug, J., and Odegaard, H., "Thermal Hydrolysate as a Carbon Source for Denitrification," Water Sci Technol., 33, 99-108 (1996). 

  51. Gavala, H., Yenal, U., Skiadas, I., Westermann, P., and Ahring, B., "Mesophilic and Thermophilic Anaerobic Digestion of Primary and Secondary Sludge. Effect of Pre-treatment at Elevated Temperature," Water Res., 37, 4561-4572 (2003). 

  52. Ferrer, I., Climent, M., Baeza, M. M., Artola, A., Vazquez, F., and Font, X., "Effect of Sludge Pretreatment on Thermophilic Anaerobic Digestion," Proceedings of the IWA Specialised Conference on Sustainable Sludge Management: Stateof- the-art, Challenges and Perspectives, May 29-31, Moscow, Russia, (2006). 

  53. Valo, A., Carrere, H., and Delgene, J., "Thermal, Chemical and Thermo-chemical Pretreatment of Waste Activated Sludge for Anaerobic Digestion," J. Chem. Technol. Biotechnol., 79, 1197-1203 (2004). 

  54. Panter, K., and Kleiven, H., "Ten Years Experience of Full Scale Thermal Hydrolysis Projects," 10th European Biosolids and Biowastes Conference, Wakefield, UK, (2005). 

  55. http://www.veoliawaterst.com/biothelys/en/ 

  56. http://www.veoliawaterst.com/exelys/en/ 

  57. Evans, T. D., "Independent review of retrofitting Cambi to MAD," Water Environment Federation 17th Annual Residuals & Biosolids Conference, Feb. 19-22, Baltimore MD, (2003). 

  58. Chu, C. P., Chang, B. V., Liao, G. S., Jean, D. S., and Lee, D. J., "Observations on Changes in Ultrasonically Treated Waste Activated Sludge," Water Res., 35, 1038-1046 (2001). 

  59. Laborde, J. L., Bouyer, C., Caltagirone, J. P., and Gerard, A., "Acoustic Bubble Cavitation at Low Frequencies," Ultrason., 36, 589-594 (1998). 

  60. Save, S., Pandit, A., and Joshi, J., "Microbial Cell Disruption: Role of Cavitation," Chem. Eng. J. Biochem. Eng. J., 55, B67-B72 (1994). 

  61. Shirgaonkar, I. Z., and Pandit, A. B., "Sonophotochemical Destruction of Aqueous Solution of 2, 4, 6-Trichlorophenol," Ultrason. Sonochem., 5, 53-61 (1998). 

  62. Balasundaram, B., and Pandit, A., "Selective Release of Invertase by Hydrodynamic Cavitation," Biochem. Eng. J., 8, 251-256 (2001). 

  63. Gogate, P. R., and Kabadi, A. M., "A Review of Applications of Cavitation in Biochemical Engineering/Biotechnology," Biochem. Eng. J., 44, 60-72 (2009). 

  64. Machnicka, A., Grubel, K., and Suschka, J., "The Use of Hydrodynamic Disintegration as a Means to Improve Anaerobic Digestion of Activated Sludge," Water SA, 35, 129-132 (2009). 

  65. Kim, D. J., and Youn, Y., "Characteristics of Ssludge Hydrolysis by Ultrasound and Thermal Pretreatment at Low Temperature," Korean J. Chem. Eng., 28, 1876-1881 (2011). 

  66. Chu, C. P., Lee, D. J., Chang, B. V., You, C. S., and Tay, J. H., "Weak Ultrasonic Pre-treatment on Anaerobic Digestion of Flocculated Activated Biosolids," Water Res., 36, 2681-2688 (2002). 

  67. Suslick, K. S., Ultrasound : Its Chemical, Physical, and Biological Effects, VCH Publishers, New York, 1988. 

  68. Tiehm, A., Nickel, K., and Neis, U., "The Use of Ultrasound to Accelerate the Anaerobic Digestion of Sewage Sludge," Water Sci. Technol., 36, 121-128 (1997). 

  69. Timothy, G., and Leighton, M., "What is Ultrasound," Prog. Biophy. Mol. Biol., 93, 3-83 (2007). 

  70. Van Bavel, E., "Effects of Shear Stress on Endothelial Cells: Possible Relevance for Ultrasound Applications," Prog. Biophy. Mol. Biol., 93, 374-383 (2007). 

  71. Bougrier, C., Carrere, H., and Delgenes, J. P., "Solubilisation of Waste-activated Sludge by Ultrasonic Treatment," Chem. Eng. J., 106, 163-169 (2005). 

  72. Wang, F., Ji, M., and Lu, S., "Influence of Ultrasonic Disintegration on the Dewaterability of Waste Activated Sludge," Environ. Prog., 25, 257-260 (2006). 

  73. Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyagi, R. D., and Surampalli, R. Y., "Ultrasonic Pretreatment of Sludge: A Review," Ultrason. Sonochem., 18, 1-18 (2011). 

  74. http://www.ovivowater.com 

  75. http://www.sonico.net 

  76. Onyeche, T. I., "Economic Benefits of Low Pressure Sludge Homogenization for Wastewater Treatment Plants," IWA Specialist Conferences, Moving forward Wastewater Biosolids Sustainability, Moncton, New Brunswick, Canada, 2007. 

  77. http://www.sludgedisintegration.com 

  78. http://www.ecosolids.com/ 

  79. Dohanyos, M., Zabranska, J., and Jenicek, P., "Enhancement of Sludge Anaerobic Digestion by Using of a Special Thickening Centrifuge," Water Sci. Technol., 36, 145-153 (1997). 

  80. Zabranska, J., Dohanyos, M., Jenicek, P., and Kutil, J., "Disintegration of Excess Activated Sludge-Evaluation and Experience of Full-scale Applications," Water Sci. Technol., 53, 229-236 (2006). 

  81. http://www.opencell.com 

  82. Tchobanoglous, G., Burton, F., and Stensel, H., Metcalf and Eddy Inc. Wastewater Engineering, Treatment and Reuse, Mc-Graw-Hill, New York, 2003, pp. 799-816. 

  83. Watts, S., Hamilton, G., and Keller, J., "Two-stage Thermophilic- mesophilic Anaerobic Digestion of Waste Activated Sludge from a Biological Nutrient Removal Plant," Water Sci. Technol., 53, 149-157 (2006). 

  84. Muller, J. A., "Pretreatment Processes for the Recycling and Reuse of Sewage Sludge," Water Sci. Technol., 42, 167-174 (2000). 

  85. Wang, X., Qiu, Z. F., Lu, S. G., and Ying, W. C., "Characteristics of Organic, Nitrogen and Phosphorus Species Released from Ultrasonic Treatment of Waste Activated Sludge," J. Hazard. Mater., 176, 35-40 (2010). 

  86. Yin, G. Q., Liao, P. H., and Lo, K. V., "An Ozone/Hydrogen Peroxide/Microwave Enhanced Advanced Oxidation Process for Sewage Sludge Treatment," J. Environ. Sci. Heal. A., 42, 1177-1181 (2007). 

  87. Le Corre, K. S., Valsami-Jones, E., Hobbs, P., and Parsons, S. A., "Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review," Crit. Rev. Environ. Sci. Technol., 39, 433-477 (2009). 

  88. Suschka, J., Machnicka, A., and Grubel, K., "Surplus Activated Sludge Disintegration for Additional Nutrients Removal," Arch. Environ. Prot., 33, 55-65 (2007). 

  89. Marti, N., Ferrer, J., Seco, A., and Bouzas, A., "Optimisation of Sludge Line Management to Enhance Phosphorus Recovery in WWTP," Water Res., 42, 4609-4618 (2008). 

  90. Marti, N., Pastor, L., Bouzas, A., Ferrer, J., and Seco, A., "Phosphorus Recovery by Struvite Crystallization in WWTPs: Influence of the Sludge Treatment Line Operation," Water Res., 44, 2371-2379 (2010). 

  91. Zhang, C., and Chen, Y. G., "Simultaneous Nitrogen and Phosphorus Recovery from Sludge-fermentation Liquid Mixture and Application of the Fermentation Liquid to Enhance Municipal Wastewater Biological Nutrient Removal," Environ. Sci. Technol., 43, 6164-6170 (2009). 

  92. Pastor, L., Mangin, D., Ferrer, J., and Seco, A., "Struvite Formation from the Supernatants of an Anaerobic Digestion Pilot Plant," Bioresour. Technol., 101, 118-125 (2010). 

  93. Bougrier, C., Delgenes, J. P., and Carrere, H., "Combination of Thermal Treatments and Anaerobic Digestion to Reduce Sewage Sludge Quantity and Improve Biogas Yield," Process Saf. Environ. Protect., 84, 280-284 (2006). 

  94. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., and Lee, J., "Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge," J. Biosci. Bioeng., 95, 271-275 (2003). 

  95. Yang, X., Wang, X., and Wang, L., "Transferring of Components and Energy Output in Industrial Sewage Sludge Disposal by Thermal Pretreatment and Two-phase Anaerobic Process," Bioresour. Technol., 101, 2580-2584 (2010). 

  96. Muller, J. A., Winter, A., and Strunkmann, G., "Investigation and Assessment of Sludge Pre-treatment Processes," Water Sci. Technol., 49, 97-104 (2004). 

  97. Whitlock, D., Sandino, J., Novak, J., Johnson, B., and Fillmore, L. "Evaluation Methology Framework for Processes to Reduce Waste Activated Solids, 2010 WEF Residuals and Biosolids Conference, (2010). 

  98. Dhar, B. R, Nakhla, G., and Ray, M. B., "Techno-economic Evaluation of Ultrasound and Thermal Pretreatments for Enhanced Anaerobic Digestion of Municipal Waste Activated Sludge," Waste Manage., 32, 542-549 (2012). 

  99. Kalogo, Y., and Monteith, H., "State of Science Report: Energy and Resource Recovery from Sludge," Water Environment Research Foundation, 2008. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로