$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해양 생물 펌프가 대기 중 이산화탄소에 미치는 영향 그리고 기후 변동과의 연관성
The Impact of the Oceanic Biological Pump on Atmospheric CO2 and Its Link to Climate Change 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.18 no.4, 2013년, pp.266 - 276  

권은영 (서울대 해양 연구소) ,  조양기 (서울대 지구환경과학부)

초록
AI-Helper 아이콘AI-Helper

바다-육지-대기로 이루어진 기후 시스템에서 가장 큰 탄소의 저장고는 바다이다. 바다가 대기로부터 탄소를 흡수하는 주요 수단은 생물 활동에 의한 것으로서, 광합성에 의해 유기 물질로 동화된 탄소가 해저로 침강하고 분해되는 과정에서 깊은 바다물은 탄소를 축적하게 된다. 이러한 탄소 수송 작용을 생물 펌프라 부르며, 해수면 탄소 농도를 낮춤으로써 대기 중 이산화탄소 분압을 낮은 상태로 유지해주는 중요한 기작이다. 생물 펌프에 의해 해저에 축적된 탄소는 해양 순환에 의해 해수면에 돌아오고, 해양-대기 기체 교환에 의해 대기로 배출된다. 바다가 대기와 소통하는 이산화탄소의 양은 과거 빙하기-간빙기 기후 변동과 관련하여 과거 수십만년동안 대기 중 이산화탄소 분압변화에 주도적인 역할을 하여 온 것으로 알려져 있다. 본 논문에서는 바다에서 일어나는 탄소 순환을 간단하게 소개하고, 해양 순환의 변화가 어떻게 탄소 순환을 변형시키고, 대기 중 이산화탄소에 영향을 미치는지를 기후 변동의 관점에서 살펴보고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The ocean is the largest reservoir of carbon in the climate system. Atmospheric $CO_2$ is efficiently transferred to the deep ocean by a process called the biological carbon pump: photosynthetic fixation of $CO_2$ at the sea surface and remineralization of sinking organic carbo...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
이산화탄소가 대기 및 바다에 미치는 영향은? 과량의 이산화탄소는 대기, 해양, 육지에 분배되고 축적되어 왔다. 대기 중에 축적된 이산화탄소는 지구 온난화(global warming)와 기후 변화(climate change)의 직접적인 원인이 되고, 바다에 흡수된 이산화탄소는 해양 산성화(ocean acidification)를 유발시키며 생태계를 위협하고 있다. 인류 문명에 의해 변형되어 온 탄소 순환(carbon cycle)을 정확히 진단하고 미래의 변화를 예측하기 위해서는 탄소 순환의 기본을 알아야 한다.
바다의 대기와 접하는 혼합층에 산소 농도가 높은 이유는? 바다 내부로의 산소 유입은 표층에서 일어나는 광합성(photosynethesis) 작용과 대기-해양 기체 교환(air-sea gas exchange)을 통해 이루어진다. 이로 인해, 대기와 접하는 혼합층(mixed layer)에서는 산소 농도가 높다.
전 지구 탄소 순환 변화를 일으키는 주요 요인은 무엇이며, 그 특징은? 인류 문명에 의해 변형되어 온 탄소 순환(carbon cycle)을 정확히 진단하고 미래의 변화를 예측하기 위해서는 탄소 순환의 기본을 알아야 한다. 특히, 바다는 전 지구 시스템에서 암석 다음으로 가장 큰 탄소의 저장고에 해당하며, 수천년에서 수십 만년 사이의 시간 규모를 가지고 전 지구 탄소 순환 변화를 일으키는 주요 요인으로 알려져 있다(Sigman and Boyle, 2000).
질의응답 정보가 도움이 되었나요?

참고문헌 (48)

  1. Adkins, J.F., K. McIntyre and D.P. Schrag, 2002. The salinity, temperature, and ${\delta}^{18}O$ of the glacial deep ocean. Science, 298: 1769-1773. 

  2. Anderson, R.F., S. Ali, L.I. Bradtmiller, S.H.H. Nielsen, M.Q. Fleisher, B.E. Anderson, L.H. Burckle, 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric $CO_2$ . Science, 323: 1443-1448. 

  3. Anderson, L.A. and J.L. Sarmiento, 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8: 65-80. 

  4. Barnola, J.M., D. Raynaud, Y.S. Korotkecish, and C. Lorius, 1987. Vostok ice core provides 160,000 year record of atmospheric $CO_2$ . Nature, 329: 408-414. 

  5. Brewer, P.G., G.T.F. Wong, M.P. Bacon and D.W. Spencer, 1975. An oceanic calcium problem? Earth Planet. Sci. Lett., 26: 81-87. 

  6. Buesseler, K.O., C.H. Lamborg, P.W. Boyd, P.J. Lam, T.W. Trull, R.R. Bidigare, J.K.B. Bishop, K.L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D.M. Karl, D.A. Siegel, M.W. Silver, D.K. Steinberg, J. Valdes, B.V. Mooy, S. Wilson, 2007. Revisiting carbon flux through the ocean's twilight zone. Science, 316: 567-570. 

  7. Bouttes, N., D. Paillard and D.M. Roche, 2010. Impact of brine-indueced stratification on the glacial carbon cycle. Clim. Past, 6: 575-589, doi:10.5194/cp-6-575-2010. 

  8. Broecker, W.S. and T.-H. Peng, 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, pp. 690. 

  9. Broecker, W.S. and T.-H. Peng, 1992. Interhemispheric transport of carbon dioxide by ocean circulation. Nature, 356: 587-589, doi: 10.1038/356587a0. 

  10. Delmas, R. J., J.-M. Ascencio, and M. Legrand, 1980. Polar ice evidence that atmospheric $CO_2$ 20,000yr BP was 50% of present. Nature, 284: 155-157. 

  11. DeVries, T. and F. Primeau, 2009. Atmospheric $pCO_2$ sensitivity to the solubility pump: Role of the low-latitude ocean. Global Biogeochem. Cycles, 23, GB4020, doi:10.1029/2009GB003537. 

  12. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson and B. Hales, 2008. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320: 1490-1492. 

  13. Gildor, H. and E. Tziperman, 2001. Physical mechanisms behind biogeochemical glacial-interglacial $CO_2$ variations. Geophys. Res. Lett., 28: 2421-2424. 

  14. Gong, D., and S. Wang, 1999. Definition of Antarctic Oscillation Index. Geophys. Res. Lett., 26: 459-462. 

  15. Ito, T. and M.J. Follows, 2005. Preformed phosphate, soft tissue pump and atmospheric $CO_2$ . J. Mar. Res., 63: 813-839. 

  16. Jin, X., N. Gruber, J.P. Dunne, J.L. Sarmiento, and R.A. Armstrong, 2006. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, $CaCO_3$ , and opal from global nutrient and alkalinity distributions. Global Biogeochem. Cycles, 20, GB2015, doi:10.1029/2005GB002532. 

  17. Key, R.M., A. Kozyr, C.L. Sabine, K. Lee, R. Wanninkhof, J.L. Bullister, R.A. Feely, F.J. Millero, C. Mordy and T.-H. Peng, 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247. 

  18. Knox, F. and M.B. McElroy, 1984. Changes in atmospheric $CO_2$ : Influence of the marine biota at high latitude. J. Geophys. Res., 89: 4629-4637. 

  19. Kwon, E.Y. and E. Galbraith, 2013. When the dust settles. Nature Geosci., 6: 423-424. 

  20. Kwon, E.Y. and F. Primeau, 2006. Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in-situ phosphate data. Global Biogeochem. Cycles, 20, GB4009, doi:10.1029/2005GB002631. 

  21. Kwon, E.Y. and F. Primeau, 2008. Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data. J. Geophys. Res., 113, C08011, doi:10.1029/2007JC004520. 

  22. Kwon, E.Y., F. Primeau and J.L. Sarmiento, 2009. The impact of remineralization depth on the air-sea carbon balance. Nature Geosci., 2: 630-635. 

  23. Kwon, E.Y., J.L. Sarmiento, J.R. Toggweiler and T. DeVries, 2011. The control of atmospheric $pCO_2$ by ocean ventilation change: The effect of the oceanic storage of biogenic carbon. Global Biogeochem. Cycles, 25, GB3026, doi:10.1029/2011GB004059. 

  24. Le Quere, C., C. Rodenbeck, E.T. Buitenhuis, T.J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, M. Heimann, 2007. Saturation of the Southern Ocean $CO_2$ sink due to recent climate change. Science, 316: 1735-1738. 

  25. Marinov, I., M.J. Follows, A. Gnandesikan, J.L. Sarmiento and R.D. Slater, 2008. How does ocean biology affect atmospheric $pCO_2$ ? Theory and models. J. Geophys. Res., 113, C07032, doi:10.1029/2007JC004598. 

  26. Marshall, G.J., 2003. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16: 4134-4143. 

  27. Martin, J.H., 1990. Glacial-interglacial $CO_2$ change: The iron hypothesis. Paleoceanography, 5: 1-13. 

  28. Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59: 661-677. 

  29. Moore, J. K., S. C. Doney and K. Lindsay, 2004. Upper ocean ecosystem dynamics and iron cycling in a global 3D model. Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220. 

  30. Murnane, R, J.L Sarmiento and C. Le Quere, 1999. Spatial distribution of air-sea $CO_2$ fluxes and the interhemispheric transport of carbon by the oceans. Global Biogeochemical Cycles, 13: 287-305. 

  31. Najjar, R.G., R.G. Najjar, X. Jin, F. Louanchi, O. Aumont, K. Caldeira, S.C. Doney, J.-C. Dutay, M. Follows, N. Gruber, F. Joos, K. Lindsay, E. Maier-Reimer, R.J. Matear, K. Matsumoto, P. Monfray, A. Mouchet, J.C. Orr, G.-K. Plattner, J.L. Sarmiento, R. Schlitzer, R.D. Slater, M.-F. Weirig, Y. Yamanaka, A. Yool, 2007. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from phase II of the ocean carbon-cycle model intercomparison project (OCMIP-2). Global Biogeochem. Cycles, 21, GB3007. 

  32. Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. PEpin, C. Ritz, E. Saltzman and M. Stievenard, 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436. 

  33. Primeau, F., 2005. Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model. J. Phys. Oceanogr., 35: 545-564. 

  34. Redfield, A.C., 1958. The biological control of chemical factors in the environment, American Scientist. 

  35. Sarmiento, J.L., J. Dunne, A. Gnanadesikan, R.M. Key, K. Matsumoto and R. Slater 2002. A new estimate of the $CaCO_3$ to organic carbon export ratio. Global Biogeochem. Cycles, 16, 1107, doi: 10.1029/2002GB001919. 

  36. Sarmiento, J.L. and N. Gruber, 2006. Ocean Biogeochemical Dynamics. Princeton Univ. Press, Princeton, N. J. 

  37. Sarmiento, J.L., N. Gruber, M. Brzezinski and J.P. Dunne, 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427: 56-60. 

  38. Sarmiento, J.L. and J.R. Toggweiler, 1984. A new model for the role of the oceans in determining atmospheric $pCO_2$ . Nature, 308: 621-624. 

  39. Siegenthaler, U. and T. Wenk, 1984. Rapid atmospheric $CO_2$ variations and ocean circulation. Nature, 308: 624-626. 

  40. Sigman, D.M. and E.A. Boyle, 2000. Gacial/interglacial variations in atmospheric carbon dioxide. Nature, 407: 859-869. 

  41. Skinner, L.C., S. Fallon, C. Waelbroeck, E. Michel and S. Barker, 2010. Ventilation of the deep Southern Ocean and deglacial $CO_2$ rise. Science, 328: 1147-1151. 

  42. Takahashi, T., W.S. Broecker, S.R. Werner and A.E. Bainbridge, 1980. Carbonate chemistry of the surface waters of the world oceans, in Isotope Marine Chemistry, edited by E.D. Goldberg, Y. Horibe, and K. Saruhashi, Uchida Rokakuho Publ., Tokyo, pp. 291-326. 

  43. Thompson, D.W.J. and J.M. Wallace, 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim., 13: 1000-1016. 

  44. Toggweiler, J.R., 1999. Variation of atmospheric $CO_2$ by ventilation of the ocean's deepest water. Paleoceanography, 14: 571-588. 

  45. Toggweiler, J.R., J.L. Russell and S. Carson, 2006. Midlatitude westerlies, atmospheric $CO_2$ , and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154. 

  46. Volk, T. and M.I. Hoffert, 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric $CO_2$ changes, in The Carbon Cycle and Atmospheric $CO_2$ : Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, AGU, Washington, D.C., pp. 99-110. 

  47. Yamanaka, Y., and E. Tajika, 1996. The role of the vertical fluxes of particulate organic matter and calcite in the ocean carbon cycle: Studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10(2): 361-382. 

  48. Zeebe, R.E. and D.A. Wolf-Gladrow, $CO_2$ in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Series, 65, pp. 346, Amsterdam, 2001. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로