$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bacillus amyloliquefaciens CH51이 생산하는 혈전용해효소의 열안정성 개선
Enhancement of the Thermostability of a Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH51 원문보기

생명과학회지 = Journal of life science, v.23 no.1 = no.153, 2013년, pp.15 - 23  

김지은 (부산대학교 미생물학과) ,  최경화 (부산대학교 미생물학과) ,  김정환 (경상대학교 식품공학과) ,  송영선 (인제대학교 식품생명과학부) ,  차재호 (부산대학교 미생물학과)

초록
AI-Helper 아이콘AI-Helper

Bacillus amyloliquefaciens CH51은 분자량 27 kDa 크기의 subtilisin 타입의 혈전용해능을 지니는 단백질분해효소인 AprE51을 생산하였다. 이전연구에서 더 우수한 혈전용해 활성을 갖는 AprE51-6이 세포외 돌연변이법으로 생산되었으며, 본 연구에서는 이 개선된 효소인 AprE51-6의 열안정성을 증진시킬 목적으로 B. subtilis subtilisin E의 아미노산과의 상동성 분석을 통하여 두 아미노산인 Gly-166과 Asn-218이 치환되었다. 그 결과 G166R과 N218S 돌연변이체는 혈전용해능을 보이는 용해능 배지에서 원 효소보다 각각 1.8배와 4.5배 높은 혈전용해능을 보였다. 정제된 두 돌연변이효소인 AprE51-7과 AprE51-8는 원효소인 AprE51-6에 비하여 1.9 그리고 2.5배 높은 $k_{cat}$값을 나타내었고, 2.1과 1.9배 낮은 기질친화력을 나타내는 $K_m$값을 보여주었다. 특히 AprE51-8는 나토키나아제에 비하여 알칼리 pH 영역에서 높은활성을 유지하였고, $60^{\circ}C$에서 더 우수한 열안정성을 보여주었다. 열안정성의 정도를 나타내는 척도인 반감기 값에서도 AprE51-7과 AprE51-8는 $50^{\circ}C$에서 21.5분과 27.3분으로 기존의 AprE51보다 2배 그리고 2.6배 더 긴 반감기를 보였다.

Abstract AI-Helper 아이콘AI-Helper

AprE51 from Bacillus amyloliquefaciens CH51 is a 27 kDa subtilisin-like protease with fibrinolytic activity. AprE51-6 showing increased catalytic activity was produced previously. To enhance the thermostability of AprE51-6, 2 residues, Gly-166 and Asn-218 based on B. subtilis subtilisin E were mutat...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To express each AprE51-7 and AprE51-8 mutant, the expression plasmids, pHY51-7 and pHY51-8, were constructed and transformed into B. subtilis ISW1214 using electroporation method, respectively. After Bacillus transformants for overexpression of the AprE51 mutants were grown, the fibrinolytic activities were detected in the culture supernatant of the two transformants using N-Succ-Ala-Ala-ProPhe-pNA as a substrate.

대상 데이터

  • Fibrinogen (from human bovine plasma), thrombin (from human plasma), and plasmin were purchased from Sigma-Aldrich. (St.
  • The chromogenic substrate N-Succ-Ala-Ala-Pro-Phe-pNA (Succ: succinyl; pNA: p-nitroaniline) was also purchased from Sigma-Aldrich. Restriction endonucleases were purchased from Beamsbio (Sungnam, Korea). PCR Premix for PCR amplification was purchased from Genetbio (Daejeon, Korea).

이론/모형

  • Fibrinolytic activity was determined using the fibrin plate method [1]. The fibrin plate was prepared by mixing 7 ml fibrinogen solution (0.
  • amyloliquefaciens CH51 and was cloned into pHY300PLK to generate pHY51 [13]. The aprE51-7 and aprE51-8 gene were constructed from aprE51-6 gene by site-directed mutagenesis using the overlap extension method [7, 13]. Oligonucleotides for site-directed mutagenesis were synthesized by Genotech (Daejeon, Korea) and were listed in Table 1.
  • The absorbance of released pNA was measured at 405 nm. The kinetic constants were determined using the Michaelis-Menten equation on the basis of the initial reaction rates.
  • 1 and Table 2). The kinetic parameters of the purified AprE51-7 and AprE51-8 were determined based on the intercepts of the Michaelis-Menten equation based on the initial reaction rates. As shown in Table 3, the kcat of AprE51-7 was 1.
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. Astrup, T. and Mullertz, S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 6, 346-351. 

  2. Baruah, D. B., Dash, R. N., Chaudhari, M. R. and Kadam, S. S. 2006. Plasminogen activators: A comparison. Vasc Pharmacol 44, 1-9. 

  3. Cai, Y., Bao, W., Jiang, S., Weng, M., Jia, Y., Yin, Y., Zheng, Z. and Zou, G. 2011. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto. FEMS Microbiol Lett 325, 155-161. 

  4. Choi, N. S. and Kim, S. H. 2001. The effect of sodium chloride on the serine-type fibrinolytic enzymes and the thermostability of extracellular protease from Bacillus amyloliquefaciens DJ-4. J Biochem Mol Biol 34, 134-138. 

  5. Collen, D. and Lijnen, H. R. 2005. Thrombolytic agents. Thromb Haemost 93, 627-630. 

  6. Desantis, G., Shang, X. and Jones, J. B. 1999. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity. Biochemistry 38, 13391-13397. 

  7. Ho, S. N., Hunt, H. D., Morton, R. M., Pullen, J. K. and Pease, L. R. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59. 

  8. Hsieh, C., Lu, W., Hsieh, W., Huang, Y., Lai, C. and Ko, W. 2009. Improvement of the stability of nattokinase using γ-polyglutamic acid as a coating material for microencapsulation. LWT-Food Sci Technol 42, 144-149. 

  9. Hwang, K. J., Choi, K. H., Kim, M. J., Park, C. S. and Cha, J. 2007. Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional Jeot-gal. J Microbiol Biotechnol 17, 1469-1476. 

  10. Ito, M. and Nagane, M. 2001. Improvement of the electo- transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. Biosci Biotechnol Biochem 65, 2773-2775. 

  11. Kannel, W. B. 2005. Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 40, 1215- 1220. 

  12. Kim, G. M., Lee, A. R., Lee, K. W., Park, J., Lee, M., Chun, J., Cha, J., Song, Y. and Kim, J. H. 2009. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from Cheonggukjang. J Microbiol Biotechnol 19, 997-1004. 

  13. Kim, J., Kim, J. H., Choi, K. H., Kim, J. H., Song, Y. S. and Cha, J. 2011. Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis. J Agric Food Chem 59, 8675-8682. 

  14. Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I. and Lee, S. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62, 2482-2488. 

  15. Law, D. and Zhang, Z. 2007. Stabilization and target delivery of nattokinase using compression coating. Drug Dev Ind Pharm 33, 495-503. 

  16. Omura, K., Hitosugi, M., Zhu, X., Ikeda, M., Maeda, H. and Tokudome, S. 2005. A newly derived protein from Bacillus subtilis natto with both antithrombotic and fibrinolytic effects. J Pharmacol 99, 247-251. 

  17. Peng, Y., Huang, Q., Zhang, R. H. and Zhang, Y. Z. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chineses soybean food. Comp Biochem Physiol 134, 45-52. 

  18. Price, N. C. and Stevens, L. 2000. Fundamentals of Enzymology; The cell and molecular biology of catalytic proteins. 3rd edition. Oxford University Press. 

  19. Sumi, H., Hamada, H., Nakanishi, K. and Hiratani, H. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of NK. Acta Haematol 84, 139-143. 

  20. Sumi, H., Hamada, H., Tsushima, H. and Mihara, H. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43, 1110-1111. 

  21. Wang, C., Du, M., Zheng, D., Kong, F., Zu, G. and Feng, Y. 2009. Purification and characterization of nattokinase from Bacillus subtilis Natto B-12. J Agric Food Chem 57, 9722-9729. 

  22. Wells, J. A., Cunningham, B. C., Graycar, T. P. and Estell, D. A. 1987. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci 84, 5167-5171. 

  23. Weng, M., Zheng, Z., Bao, W., Cai, Y., Yin, Y. and Zou, G. 2009. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Biochim Biophys Acta 1794, 1566-1572. 

  24. Wu, B., Wu, L., Ruan, L., Ge, M. and Chen, D. 2009. Screening of endophytic fungi with antithrombic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Curr Microbiol 58, 522-527. 

  25. Xue, G., Johnson, J. S. and Dalrymple, B. P. 1999. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34, 183-191. 

  26. Yang, Y., Jiang, L., Yang, S., Zhu, L., Wu, Y. and Li, Z. 2000. A mutant subtilisin E with enhanced thermostability. World J Microbiol Biotechnol 16, 249-251. 

  27. Zhao, H. and Arnold, F. H. 1999. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng 12, 47-53. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로