$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams 논문타임라인

Computers & concrete, v.11 no.3, 2013년, pp.237 - 252  

Mohammadhassani, Mohammad (Department of Civil Engineering, University of Malaya) ,  Nezamabadi-pour, Hossein (Department of Electrical Engineering, Shahid Bahonar University of Kerman-Iran) ,  Jumaat, Mohd Zamin (Department of Civil Engineering, University of Malaya) ,  Jameel, Mohammed (Department of Civil Engineering, University of Malaya) ,  Arumugam, Arul M.S. (Department of Civil Engineering, University of Malaya)

Abstract AI-Helper 아이콘AI-Helper

This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The fee...

주제어

참고문헌 (40)

  1. Adeli, H. (2001), "Neural networks in civil engineering", Comput. Aided Civil Infrastruct Eng., 16(1), 26-42. 

  2. Ashour, A. and Yang, K.H. (2008), "Application of plasticity theory to reinforced concrete deep beams: a review", Mag. Concrete Res., 60(9), 9657-9664. 

  3. Ashrafi, H.R., Jalal, M. and Garmsiri, K. (2010), "Prediction of load-displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network", Expert Syst. Appl., 37(12), 7663-7668. 

  4. Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Appl., 38(8), 9609-9618. 

  5. Bilgehan, M. and Turgut, P. (2010a), "Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity", Res. Nondestruct. Eval., 21(1), 1-17. 

  6. Bilgehan, M and Turgut, P. (2010b), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete., 7(3), 271-283. 

  7. British Standard Institution (1985), "Structural use of concrete", (BS 8110: Part 1. Code of Practice for Design and Construction), BSI, London. 

  8. Chandak, R., Upadhyay, A. and Bhargava, P. (2008), "Shear lag prediction in symmetrical laminated composite box beams using artificial neural network", Struct. Eng. Mech., 29(1), 77-89. 

  9. Chemrouk, M. and Kong, F.K. (2004), "High strength concrete continuous deep beams-with web reinforcement and shear-span variations", Adv. Struct. Eng., 7, 3229-3243. 

  10. CIRIA Guide 2. (1977), "The design of deep beams in reinforced concrete", London: Over Arup and Partners, and Construction Industry Research and Information Association, 131. 

  11. Danielson, K.T., Adley, M.D. and O'Daniel, J.L. (2010), "Numerical procedures for extreme impulsive loading on high strength concrete structures", Comput. Concrete, 7(2), 159-167. 

  12. Davis, L. (1991), "Hand book of genetic algorithms", (New York: Van Nostrand Reinhold). 

  13. Eurocode 2. (1992), "Design of concrete structure, Part 1, general rules and regulations for building", London: British standards institution. 

  14. Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering, principle and understanding", ASCE J. Comput. Civil Eng., 8(2), 131-148. 

  15. Kang, H.T., Teng, S., Kong, F.K. and Lu, H.Y. (1997), "Main tension steel in high strength concrete deep and short beams", Struct. J., 94(6), 752-768. 

  16. Lam, J.Y.K., Ho, J.C.M. and Kwan, A.K.H. (2009), "Maximum axial load level and minimum confinement for limited ductility design of high strength concrete columns", Comput. Concrete, 6(5), 357-376. 

  17. Lee, H.S., Ko, D.W. and Sun, S.M. (2011), "Behavior of continuous RC deep girders that support walls with long end shear spans", Struct. Eng. Mech., 38(4), 385-403. 

  18. Londhe, R.S. (2011), "Shear strength analysis and prediction of reinforced concrete transfer beams in highrise buildings", Struct. Eng. Mech., 37(1), 39-59. 

  19. Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Comput. Concrete, 7(1), 1-16. 

  20. Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Ashour, A. (2011a), "An experimental investigation of the stress-strain distribution and modulus of rupture in high strength concrete deep beams", Eng. Fail. Anal., 18, 2272-2281. 

  21. Mohammadhassani, M., Jumaat, M.Z., Chemrouk, M., Maghsoudi, A.A., Jameel, M. and Akib, S. (2011b), "An experimental investigation on bending stiffness and neutral axis depth variation of over-reinforced high strength concrete beams", Nucl. Eng. Des., 241(6), 2060-2067. 

  22. Mohammadhassani, M., Jumaat, M.Z. and Jameel, M. (2012a), "Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams", Constr. Build. Mater., 30, 265-273. 

  23. Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Arumugam Arul, M.S. (2012b), "Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation", 10.1016/j.nucengdes.2012.05.005. 

  24. Mohebbi, A., Shekarchi, M., Mahoutian, M. and Mohebbi, S.(2011), "Modelling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network", Comput. Concrete, 8(3), 279-292. 

  25. Parichatprecha, R. and Nimityongskul, P. (2009), "An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. 

  26. Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite", Struct. Eng. Mech., 36(2), 165-179. 

  27. Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., 39(2), 267-285. 

  28. Perera, R., Barchin, M., Arteaga, A.D. and Diego, A. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B., 41(4), 287-298. 

  29. Perera, R. and Vique, J. (2009), "Strut-and-tie modelling of reinforced concrete beams using genetic algorithms optimization", Constr. Build. Mater., 23(8), 2914-2925. 

  30. Pimentel, M., Cachim, P. and Figueiras, J. (2008), "DEEP-BEAMs with indirect supports: numerical modelling and experimental assessment", Comput. Concrete, 5(2), 117-134. 

  31. Rafat, S., Paratibha, A. and Yogesh, A. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", doi:10.1016/j.advengsoft. 05.016 

  32. Rajasekharan, S. and Vijayalakshmi, P.G.A. (2003), "Neural networks, fuzzy logic and genetic algorithms", (New Delhi: Prentice Hall) 

  33. Ray, S.P. (1980), "Behaviour and ultimate shear strength of reinforced concrete deep beams with and without opening in web", PhD thesis, Indian Institute of Technology, Kharagpur, India. 

  34. Rigoti, M. (2002), "Diagonal cracking in reinforced concrete deep beam-An experimental investigation, PhD Thesis", Concordia University, Montreal, Quebec, Canada . 

  35. Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate strength of reinforced concrete deep beams by neural networks", ASCE J. Struct. Eng., 127(7), 818-828. 

  36. Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A. and Dentsoras, A.J. (2008), "Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements", Comput. Struct., 86(11-12),1318-1338. 

  37. Schlaich, J. and Schafer, K. (1991), "Design and detailing of structural concrete using strut-and-tie models", Struct. Eng., 69(6), 113-125. 

  38. Sonmez, M. and Aydin Komur, M. (2010), "Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load", Struct. Eng. Mech., 34(2), 159-174. 

  39. Yang, K.H., Chung, H.S. and Ashour, A.F. (2007), "Influence of section depth on the structural behaviour of reinforced concrete continuous deep beams", Mag. Concrete Res., 59(8), 8575-8586. 

  40. Yun, Y.M. (2005), "Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams", Comput. Concrete, 2(4), 267-291. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로