$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Antiviral Activity of the Plant Extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii Against Influenza Virus A/PR/8/34 원문보기

Journal of microbiology and biotechnology, v.23 no.1, 2013년, pp.125 - 130  

Won, Ji-Na (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Lee, Seo-Yong (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Song, Dae-Sub (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ,  Poo, Haryoung (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))

Abstract AI-Helper 아이콘AI-Helper

Influenza viruses cause significant morbidity and mortality in humans through epidemics or pandemics. Currently, two classes of anti-influenza virus drugs, M2 ion-channel inhibitors (amantadin and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir), have been used for the treatment...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Influenza infection causes a cytopathic effect (CPE) that is signified by the cellular detachment as well as the cell rounding, swelling, and finally death [6, 21]. In order to evaluate the effect of the three selected extracts on the CPE of the infected cells, the CPE reduction assay was performed. The MDCK cells were first infected with the influenza virus and treated with the plant extracts at the concentration of 100 µg/ml.
  • In this study, three thousand plant extracts were investigated for their antiviral effects against influenza virus infection using the cell-based screening system. We found three plant extracts that could inhibit the infection by the influenza A/PR/8/34 virus in the cell culture.
  • The PCR was performed for 25 cycles at the following times and temperatures:10 s at 94ºC, 30 s at 55ºC, 1 min at 68ºC, and 5 min at 68ºC.
  • After 3 days of incubation, the antiviral activity was determined by the cell viability assay as described above. The plates were then examined by photometric analysis for the cytopathic effect. The cell morphology was observed under the inverted microscope at 10 × 20 magnification.
  • To find the plant extracts that have antiviral effects, we performed the cell-based screening and measured ATP levels to determine the viability of the cell. MDCK cells were infected with influenza A/PR/8/34 virus with or without 100 µg/ml of plant extract.

대상 데이터

  • The cells were incubated in a humidified atmosphere of 5% CO2 at 37ºC. Oseltamivir carboxylate, the active form of oseltamivir, was provided by Chungnam National University Hospital.
  • The primer sequences were as follows: 5'-AGTGAGCGAGGACTGCAGCGT-3' and 5'-TAGCYT TAGCYGTRGTGCTGGC-3' for the M gene, 5'-CCCATCACCATC TTCCAGGAGC-3' and 5'-CCAGTGAGCTTCCCTTCAGC-3' for the GAPDH gene.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Bright, R. A., D. K. Shay, B. Shu, N. J. Cox, and A. I. Klimov. 2006. Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA 295: 891-894. 

  2. Cassetti, M. C., R. Couch, J. Wood, and Y. Pervikov. 2005. Report of meeting on the development of influenza vaccines with broad spectrum and long-lasting immune responses, World Health Organization, Geneva, Switzerland, 26-27 February 2004. Vaccine 23: 1529-1533. 

  3. CDC. 2009. Effectiveness of 2008-09 trivalent influenza vaccine against 2009 pandemic influenza A (H1N1) - United States, May-June 2009. Morb. Mortal. Wkly. Rep. 58. 

  4. Choi, H. J., J. H. Song, K. S. Park, and D. H. Kwon. 2009. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 37: 329-333. 

  5. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162: 156-159. 

  6. Condit, R. C. 2006. Fields virology, pp. 25-57. In D. M. Knipe and P. M. Howley (eds.). Principles of Virology, 5th Ed. Lippincott Williams and Wilkins, Philadelphia. 

  7. Couch, R. B. and G. G. Jackson. 1976. Antiviral agents in influenza - summary of Influenza Workshop VIII. J. Infect. Dis. 134: 516-527. 

  8. De Clercq, E. 2004. Antiviral drugs in current clinical use. J. Clin. Virol. 30: 115-133. 

  9. Furuta, Y., K. Takahashi, M. Kuno-Maekawa, H. Sangawa, S. Uehara, K. Kozaki, et al. 2005. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 49: 981-986. 

  10. Garten, R. J., C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, et al. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197-201. 

  11. Glezen, W. P. 1996. Emerging infections: Pandemic influenza. Epidemiol. Rev. 18: 64-76. 

  12. Hampson, A. W. 2002. Influenza virus antigens and 'antigenic drift', pp. 49-85. In C. W. Potter (ed.). Perspectives in Medical Virology, Vol. 7. Elsevier. 

  13. Hui, E. K. and D. P. Nayak. 2001. Role of ATP in influenza virus budding. Virology 290: 329-341. 

  14. Irvine, J. D., L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove. 1999. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 88: 28-33. 

  15. Jackson, D. C. and L. E. Brown. 1991. A synthetic peptide of influenza virus hemagglutinin as a model antigen and immunogen. Pept. Res. 4: 114-124. 

  16. Kawaoka, Y. 2006. Influenza Virology: Current Topics. Caister Academic Press. 

  17. Kelly, H. and K. Grant. 2009. Interim analysis of pandemic influenza (H1N1) 2009 in Australia: Surveillance trends, age of infection and effectiveness of seasonal vaccination. Euro. Surveill. 14. 

  18. Kiso, M., K. Takahashi, Y. Sakai-Tagawa, K. Shinya, S. Sakabe, Q. M. Le, et al. 2010. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc. Natl. Acad. Sci. USA 107: 882-887. 

  19. Murris-Espin, M., A. Didier, S. Mezghani, L. Lacassagne, and P. Leophonte. 1999. Influenza and asthma. Rev. Mal. Res. 16: 9-15. 

  20. Noah, J. W., W. Severson, D. L. Noah, L. Rasmussen, E. L. White, and C. B. Jonsson. 2007. A cell-based luminescence assay is effective for high-throughput screening of potential influenza antivirals. Antiviral Res. 73: 50-59. 

  21. Numazaki, Y., T. Oshima, A. Ohmi, A. Tanaka, Y. Oizumi, S. Komatsu, et al. 1987. A microplate method for isolation of viruses from infants and children with acute respiratory infections. Microbiol. Immunol. 31: 1085-1095. 

  22. Palese, S. M. 2007. Orthomyxoviridae: The viruses and their replication, pp. 1647-1689. In K. DM and H. PM (eds.). Fields Virology, 5th Ed. Lippincott Williams &Wilkins, Philadelphia. 

  23. Poland, G. A., R. M. Jacobson, and P. V. Targonski. 2007. Avian and pandemic influenza: An overview. Vaccine 25: 3057-3061. 

  24. Renaud, C., J. Kuypers, and J. A. Englund. 2011. Emerging oseltamivir resistance in seasonal and pandemic influenza A/ H1N1. J. Clin. Virol. 52: 70-78. 

  25. WHO. 2009. Summary report of a high-level consultation: New influenza A (H1N1). World Health Organization, Geneva. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로