$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가
Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete 원문보기

콘크리트학회논문집 = Journal of the Korea Concrete Institute, v.25 no.5, 2013년, pp.547 - 554  

강수태 (대구대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

이 연구에서는 UHPFRC에 대해 강섬유의 인발실험을 수행하고, 그 결과로부터 매트릭스에 대한 강섬유의 부착강도를 정량적으로 평가하고자 하였다. 실험은 여러 개의 섬유를 이용한 양면 인발실험을 적용하였다. 섬유분포밀도에 따른 영향을 파악해 본 결과, 이 연구에서 고려한 섬유분포밀도의 범위는 섬유 간 상호간섭효과를 나타내지 않는 범위임을 확인하였다. 최대 인발하중 상태의 하중 또는 흡수에너지, 완전 뽑힘 상태의 흡수에너지를 고려한 몇 가지 방법들로 부착강도를 평가한 결과, 완전 뽑힘 상태의 흡수에너지로부터 구한 부착강도는 섬유의 묻힘길이에 영향을 받는 것으로 나타났다. 그리고 최대 인발하중 상태로부터 구한 부착강도는 평균적으로 약 6.64 MPa의 부착강도를 나타냈으며, 이 값은 최대 인발하중만으로 구한 부착강도 6.46 MPa와 비교했을 때 큰 차이가 없는 것으로 나타났다. 실험 및 평가의 용이성을 고려할 때 최대 인발하중만으로 부착강도를 평가해도 무방할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result pr...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 이 연구에서는 UHPFRC에 대해 강섬유의 인발 실험을 수행하고, 그 결과로부터 매트릭스에 대한 강섬유의 부착강도를 정량적으로 평가하고자 하였다.

가설 설정

  • 6과 같다. 즉, 초기에 섬유와 매트릭스 사이의 부착상태가 떨어지는데 작용하는 최대부착강도는 무시하고 마찰부착강도가 지배적으로 작용한다고 보았으며, 마찰부착강도는 슬립량에 관계없이 일정하다고 가정하였다. 첫 번째 방법은 최대인발하중으로부터 구하는 방법으로, 매트릭스에 매입된 섬유의 전체길이에 대해 마찰부착강도로 전단력이 작용하는 상태가 최대 인발하중상태임을 고려한 것이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
콘크리트 물성의 특징은? 콘크리트는 압축강도에 비해 상대적으로 매우 낮은 인장강도를 보이며, 그 때의 변형률도 작은 값을 나타낸다. 콘크리트와 같은 취성재료들은 균열 발생 이전의 변형성능이 아주 적고 균열발생 이후에도 급속한 파괴로 균열에 대한 저항성이 매우 낮다.
취성재료의 특징은? 콘크리트는 압축강도에 비해 상대적으로 매우 낮은 인장강도를 보이며, 그 때의 변형률도 작은 값을 나타낸다. 콘크리트와 같은 취성재료들은 균열 발생 이전의 변형성능이 아주 적고 균열발생 이후에도 급속한 파괴로 균열에 대한 저항성이 매우 낮다. 이러한 단점을 극복하기 위한 방법으로 섬유보강 콘크리트에 대한 연구가 1950년대 이후로 꾸준히 진행되어 오고 있다.
취성재료의 단점을 보안하기위해 콘크리트에 섬유를 혼입하면 어떻게되는가? 이러한 단점을 극복하기 위한 방법으로 섬유보강 콘크리트에 대한 연구가 1950년대 이후로 꾸준히 진행되어 오고 있다. 일반적으로 콘크리트에 섬유를 혼입하게 되면 콘크리트의 균열발생을 늦추고, 균열진전을 억제하는 효과가 있어 인장에 대한 강도 증가와 인성향상을 크게 기대할 수 있다. 이와 같은 현상은 매트릭스 내 섬유의 부착거동에 따른 것으로, 섬유보강 효과의 주된 메커니즘을 이루고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (21)

  1. Mandel, J., Wei, S., and Said, S., "Studies of the Properties of the Fiber-Matrix Interface in Steel Fiber Reinforced Mortar," ACI Materials Journal, Vol. 84, 1987, pp. 101-109. 

  2. Stang, H. and Shah, S. P., "Failure of Fiber-Reinforced Composites by Pull-out Fracture," Journal of Materials Science, Vol. 21, 1986, pp. 953-957. 

  3. Li, V. C., Wu, C., Wang, S., Ogawa, A., and Saito, T., "Interface Tailoring for Strain-Hardening Polyvinyl Alcohol- Engineered Cementitious Composites (PVA-ECC)," ACI Materials Journal, Vol. 99, No. 5, 2002, pp. 463-472. 

  4. Kim, D. J., "Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers," Journal of the Korea Concrete Institute, Vol. 22, No. 4, 2010, pp. 575-583. (doi: http://dx.doi.org/10.4334/JKCI.2010.22.4.575) 

  5. Lee, H. H. and Lee, H. J., "Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume Fraction," Journal of the Korea Concrete Institute, Vol. 16, No. 6, 2004, pp. 759-766. 

  6. Kim, M. H., Kim, J. M., and Nam, S. I., "An Experimental Study on the Development and Application of Steel Fiber Reinforced Concrete," Journal of the Korea Concrete Institute, Vol. 6, No. 1, 1994, pp. 142-151. 

  7. Morton, J. and Groves, G. W., "The Cracking of Composites Consisting of Discontinuous Reinforced Concrete," Journal of Material Science, Vol. 9, No. 9, 1974, pp. 1436-1445. 

  8. Ezeldin, A. S. and Balaguru, B. N., "Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete," ACI Materials Journal, Vol. 86, No. 5, 1989, pp. 515-524. 

  9. Shannag, M. J., Brincker, R., and Hansen, W., "Interfacial (Fiber-Matrix) Properties of High-Strength Mortar (150 MPa) from Fiber Pullout," ACI Materials Journal, Vol. 93, No. 5, 1996, pp. 1-7. 

  10. Shannag, M. J., Brincker, R., and Hansen, W., "Pullout Behavior of Steel Fibers from Cement-Based Composites," Cement and Concrete Research, Vol. 27, No. 6, 1997, pp. 925-936. 

  11. Orange, G., Acker, P., and Vernet, C., "A New Generation of UHP Concrete: Ductal Damage Resistance and Micromechanical Analysis," Proceedings of Third International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC3), Mainz, Germany, 1999, pp. 101-111. 

  12. Nammur, G. G. and Naaman, A. E., "A Bond Stress Model for Fiber Reinforced Concrete Based on Bond Stress Slip Relationship," ACI Materials Journal Vol. 86, No. 1, 1989, pp. 45-57. 

  13. Lin, Z., Kanda, T., and Li V. C., "On Interface Property Characterization and Performance of Fiber-Reinforced Cementitious Composites," Concrete Science and Engineering, Vol. 1, 1999, pp. 173-174. 

  14. Lee, Y., Kang, S. T., and Kim, J. K., "Pullout Behavior of Inclined Steel Fiber in an Ultra-High Strength Cementitious Matrix," Construction and Building Materials, Vol. 24, No. 10, 2010, pp. 2030-2041. (doi: http://dx.doi.org/10.1016/ j.conbuildmat.2010.03.009) 

  15. Gray, R. J., "Experimental Techniques for Measuring Fibre/Matrix Interfacial Bond Shear Strength," Testing, Evaluation and Quality Control of Composites, Butterworth Scientific Ltd. UK, 1983, pp. 3-11. 

  16. Armelin, H. S. and Banthia, N., "Predicting the Flexural Postcracking Performance of Steel Fiber Reinforced Concrete from the Pullout of Single Fibers," ACI Materials Journal, Vol. 94, No. 1, 1997, pp. 18-31. 

  17. Chan, Y. W. and Chu, S. H., "Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete," Cement and Concrete Research, Vol. 34, 2004, pp. 1167-1172. (doi: http://dx.doi.org/doi: 10.1016/j.cemconres.2003.12.023) 

  18. Park, J. J., Koh, K. T., Kang, S. T., and Kim, S. W., "Influence of Constitute Factor on the Compressive Strength of Ultra-High Strength Steel Fiber Reinforced Cementitious Composites," Journal of the Korea Concrete Institute, Vol. 17, No. 1, 2005, pp. 35-41. 

  19. Richard, P. and Cheyrezy, M. H., "Reactive Powder Concrete with High Ductility and 200-800MPa Compressive Strength," Concrete Technology: Past, Present, and Future, SP-144, American Concrete Institute, Farmington Hills, 1994, pp. 507-518. 

  20. Leung, C. K. Y. and Shapiro, N., "Optimal Steel Fiber Strength for Reinforcement of Cementitious Materials," Journal of Materials in Civil Engineering, Vol. 11, No. 2, 1999, pp. 116-123. (doi: http://dx.doi.org/10,1016/(ASCE) 0899-1561(1999)11:2(116)) 

  21. Fantilli, A. P., Mihashi, H., and Vallini, P., "Effect of Bond-Slip on the Crack Bridging Capacity of Steel Fibers in Cement-Based Composites," Journal of Materials in Civil Engineering, Vol. 20, No. 9, 2008, pp. 588-598. (doi: http://dx.doi.org/10,1016/(ASCE)0899-1561(2008)20:9 (588)) 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로