$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

다구치 강건설계 방법 : 현황과 과제
The Taguchi Robust Design Method : Current Status and Future Directions 원문보기

대한산업공학회지 = Journal of the Korean Institute of Industrial Engineers, v.39 no.5, 2013년, pp.325 - 341  

염봉진 (KAIST 산업 및 시스템공학과) ,  김성준 (강릉 원주대학교 산업공학과) ,  서순근 (동아대학교 산업경영공학과) ,  변재현 (경상대학교 산업시스템공학부) ,  이승훈 (동의대학교 산업경영공학과)

Abstract AI-Helper 아이콘AI-Helper

During the past several decades, the Taguchi robust design method has been widely used in various fields successfully. On the other hand, some researchers and practitioners have criticized the method with respect to the way of utilizing orthogonal arrays, the signal-to-noise ratio as a performance m...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
직적배열 실험의 장점 및 비판점은 무엇입니까? 다구치방법에서는 내측과 외측 직교표로 구성된 직적배열에 의한 실험을 추천하고 있다. 직적배열 실험의 장점은 내측의 모든 설계조건에 공통의 잡음조건을 공정하게 부여할 수있다는 것이다. 또한, 특성치 자체를 분석하여 강건설계를 수행하고자 하는 Response Modeling Approach의 입장에서 보면, 설계변수와 잡음변수 간의 모든 2인자 교호작용효과를 파악할 수 있는 장점이 있다. 그러나 직적배열 실험은 상대적으로 많은 실험횟수를 필요로하므로 비경제적이라는 비판이 있다. 이러한 비판을 받아들여 다구치는 잡음을 조합하여 외측 잡음조건의 수를 2 또는 3개로 줄이는 방법을 제시하였다.
다구치방법의 기본개념은 어떻게 요약됩니까? , 1990). 첫째, 품질관리 활동은 제품설계, 늦어도 공정설계 단계에서 이루어지는 것이 바람직하다. 왜냐하면 그 다음 단계인 공정관리나 최종 검사 등을 통해서는 제품의 고유 품질수준을 향상시키기 어렵기 때문이다. 둘째, 제품의 특성치는 잡음의 영향으로 말미암아 목표치를 일관성 있게 유지하지 못하고 산포하기 마련이다. 그리고 이러한 산포에 따라 손실이 발생하며, 손실의 크기는 산포의 정도에 의존한다. 셋째, 높은품질의 제품이란 소비자에게 끼치는 손실이 작은 제품을 의미한다. 따라서 제품이나 공정은 생산된 제품의 특성치가 잡음하에서도 산포가 작도록(즉, 강건하도록) 설계되어야 한다. 넷째, 이와 같은 제품이나 공정을 확보함에 있어, 잡음에 대한 간접적 대응책이 가능한가를 먼저 파악하고, 불가능하다고 판단되었을 때만 직접적 대응책을 고려함으로써 경제성을 도모한다.
잡음에 대한 대응책은 어떻게 나뉘게 됩니까? 잡음에 대한 대응책은 잡음을 그대로 수용하는 방법(중요하지 않는 잡음일 때는 경제적임), 잡음을 제거 또는 통제하는 방법, 잡음의 영향을 보정(feedback 또는 adaptive control 등)하는 방법, 그리고 잡음을 그대로 둔 상태에서 특성치가 잡음에 강건하도록 제품 또는 공정을 설계하는 방법 등으로 나눌 수 있다 (Nair, 1992). 다구치 파라미터설계는 마지막 대응책에 해당한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (87)

  1. Antony, J. (2000), Multi-Response Optimization in Industrial Experiments using Taguchi's Quality Loss Function and Principal Component Analysis, Quality and Reliability Engineering International, 16(1), 3-8. 

  2. Ardakani, M. K. and Wulff, S. S. (2012), An Overview of Optimization Formulations for Multiresponse Surface Problems, Quality and Reliability Engineering International, 29(1), 3-16. 

  3. Bisgaard, S. (1997), Design Experiments for Tolerancing Assembled Products, Technometrics, 39(2), 142-152. 

  4. Bisgaard, S., Graves, S., and Shin, G. (2000), Tolerancing Mechanical Assemblies with CAD and DOE, Journal of Quality Technology, 32(3), 231-240. 

  5. Box, G. (1988), Signal-to-Noise Ratios, Performance Criteria, and Transformations, with discussions, Technometrics, 30(1), 1-17. 

  6. Box, G. and Jones, S. (1986), Discussion of "Testing in Industrial Experiments with Ordered Categorical Data" by V. N. Nair, Technometrics, 28(4), 295-301. 

  7. Box, G. and Jones, S. (1992), Split-Plot Designs for Robust Product Experimentation, Journal of Applied Statistics, 19(1), 3-26. 

  8. Byun, J. H. and Kim, K. J. (1998), A Desirability Function Approach to the Robust Design for Multiple Quality Characteristics, Journal of the Korean Institute of Industrial Engineers, 24(2), 287-296. 

  9. Cho, B. R., Kim, Y. J., Kimbler, D. L., and Phillips, M. D. (2000), An Integrated Joint Optimization Procedure for Robust and Tolerance Design, International Journal of Production Research, 38(10), 2309-2325. 

  10. Del Castillo, E. and Montgomery, D. C. (1993), A Nonlinear Programming Solution to the Dual Response Problem, Journal of Quality Technology, 25(3), 199-204. 

  11. Deng, J. L. (1982), Control Problems of Grey Systems, Systems and Control Letters, 1(5), 288-294. 

  12. D'Errico, J. R. and Zaino, Jr., N. A. (1988), Statistical Tolerancing Using Modification of Taguchi's Method, Technometrics, 30(4), 397-405. 

  13. Derringer, G. and Suich, R. (1980), Simultaneous Optimization of Several Response Variables, Journal of Quality Technology, 12(4), 214-219. 

  14. Faraway, J. J. (1997), Regression Analysis for a Functional Response, Technometrics, 39(3), 254-261. 

  15. Fogliatto, F. S. (2008), Multiresponse Optimization of Products with Functional Quality Characteristics, Quality and Reliability Engineering International, 24(8), 927-939. 

  16. Gauri, S. K. and Pal, S. (2010), Comparison of Performances of Five Prospective Approaches for the Multi-Response Optimization, International Journal of Advanced Manufacturing Technology, 48(9-12), 1205-1220. 

  17. Goethals, P. L. and Cho, B. R. (2011), The Development of a Robust Design Methodology for Time-oriented Dynamic Quality Characteristics with a Target Profile, Quality and Reliability Engineering International, 27(4), 403-414. 

  18. Govaerts, B. and Noel, J. (2005), Analysing the Results of a Designed Experiment When the Response is a Curve : Methodology and Application in Metal Injection Moulding, Quality and Reliability Engineering International, 21(5), 509-520. 

  19. Hamada, M. (1992), An Explanation and Criticism of Minute Accumulating Analysis, Journal of Quality Technology, 24(2), 70-77. 

  20. Hamada, M. and Nelder, J. A. (1997), Generalized Linear Models for Quality Improvement Experiments, Journal of Quality Technology, 29(3), 292-304. 

  21. Hamada, M. and Wu, C. F. J. (1990), A Critical Look at Accumulation Analysis and Related Methods, with discussions, Technometrics, 32(2), 119-130. 

  22. Hirotsu, C. (1990), Discussion of "A Critical Look at Accumulation Analysis and Related Methods" by M. Hamada and C. F. J. Wu, Technometrics, 32(2), 133-136. 

  23. Jeang, A. (1999), Optimal Tolerance Design by Response Surface Methodology, International Journal of Production Research, 37(14), 3275- 3288. 

  24. Jeng, Y. C. and Guo, S. M. (1996), Quality Improvement for RC06 Chip Resistor, Quality and Reliability Engineering International, 12(6), 439-445. 

  25. Jeyapaul, R., Shahabudeen, P., and Krishnaiah, K. (2005), Quality Management Research by Considering Multi-response Problems in the Taguchi Method - a Review, International Journal of Advanced Manufacturing Technology, 26(11-12), 1331-1337. 

  26. Joseph, V. R. and Wu, C. F. J. (2002), Robust Parameter Design of Multiple Target Systems, Technometrics, 44(4), 338-346. 

  27. Jung, J. R. and Yum, B. J. (2011), Uniformity and Signal-to-noise Ratio for Static and Dynamic Parameter Designs of Deposition Processes, International Journal of Advanced Manufacturing Technology, 54(5-8), 619-628. 

  28. Kackar, R. N. (1985), Off-Line Quality Control, Parameter Design, and the Taguchi Method, with discussions, Journal of Quality Technology, 17(4), 176-188. 

  29. Kim, S. J. (2005), An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method, International Journal of Fuzzy Logic and Intelligent Systems, 5(3), 183-188. 

  30. Kim, S. J. (2013), A Review on the Taguchi Method and Its Alternatives for Dynamic Robust Design, Journal of the Korean Institute of Industrial Engineers, 39(5), 351-360. 

  31. Kim, Y. J. (2002), Response Surface Approach to Integrated Optimization Modeling for Parameter and Tolerance Design, Journal of the Korean Society for Quality Management, 30(4), 58-67. 

  32. Kuhn, A. M., Carter, W. H., and Myers, R. H. (2000), Incorporating Noise Factors into Experiments with Censored Data, Technometrics, 42(4), 376-383. 

  33. Lee, Y. and Nelder, J. A. (2003), Robust Design via Generalized Linear Models, Journal of Quality Technology, 35(1), 2-12. 

  34. Lee, P. H. and Yum, B. J. (2003), Multi-Characteristics Parameter Design : A Desirability Function Approach Based on Process Capability Indices, International Journal of Reliability, Quality, and Safety Engineering, 10(4), 445-461. 

  35. Leon, R. V., Shoemaker, A. C., and Kacker, R. N. (1987), Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios, with discussions, Technometrics, 29(3), 253-265. 

  36. Lesperance, M. L. and Park, S. M. (2003), GLMs for the Analysis of Robust Designs with Dynamic Characteristics, Journal of Quality Technology, 35(3), 253-263. 

  37. Liao, H. C. (2006), Multi-Response Optimization Using Weighted Principal Component, International Journal of Advanced Manufacturing Technology, 27(7-8), 720-725. 

  38. Lin, D. and Tu, W. (1995), Dual Response Surface Optimization, Journal of Quality Technology, 27(1), 34-39. 

  39. Lin, J. L. and Lin, C. L. (2002), The Use of the Orthogonal Array with Grey Relational Analysis to Optimize the Electrical Discharge Machining Process with Multiple Performance Characteristics, International Journal of Machine Tools and Manufacture, 42(2), 237-244. 

  40. Lin, J. L. and Tarng Y. S. (1998), Optimization of the Multi-response Process by the Taguchi Method with Grey Relational Analysis, Journal of Grey System, 10(4), 355-370. 

  41. Lin, J. L., Wang, K. S., Yan, B. H., and Tarng, Y. S. (2000), Optimization of the Electrical Discharge Machining Process Based on the Taguchi Method with Fuzzy Logics, Journal of Material Processing Technology, 102(1-3), 48-55. 

  42. Logothetis, N. (1990), Box-Cox Transformations and the Taguchi Method, Applied Statistics, 39(1), 31-48. 

  43. Lucas, J. M. (1994), How to Achieve a Robust Process Using Response Surface Methodology, Journal of Quality Technology, 26(4), 248-260. 

  44. Murphy, T. E., Tsui, K. L., and Allen, J. K. (2005), A Review of Robust Design Methods for Multiple Responses, Research in Engineering Design, 15(4), 201-215. 

  45. Myers, R. H., Khuri, A. I. and Vining, G. (1992), Response Surface Alternatives to the Taguchi Robust Parameter Design Approach, The American Statistician, 46(2), 131-139. 

  46. Myers, W. R., Brenneman, W. A., and Myers, R. H. (2005), A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model, Journal of Quality Technology, 37(2), 130-138. 

  47. Nair, V. N. (1986), Testing in Industrial Experiments with Ordered Categorical Data, Technometrics, 28(4), 283-291. 

  48. Nair, V. N. (Ed.) (1992), Taguchi's Parameter Design : A Panel Discussion, Technometrics, 34(2), 127-161. 

  49. Nair, V. N. and Pregibon, D. (1986), A Data Analysis Strategy for Quality Engineering Experiments, AT&T Technical Journal, 65(3), 73-84. 

  50. Nair, V. N., Taam, W. and Ye, K. Q. (2002), Analysis of Functional Responses from Robust Design Studies, Journal of Quality Technology, 34(4), 355-370. 

  51. Nelder, J. A. and Lee, Y. (1991), Generalized Linear Models for the Analysis of Taguchi-type Experiments, Applied Stochastic Models and Data Analysis, 7(1), 107-120. 

  52. Opricovic, S. and Tzeng, G. H. (2004), Compromise Solution by MCDM Methods : A Comparative Analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156(2), 445-455. 

  53. Pal, S. and Gauri, S. K. (2010), Assessing Effectiveness of the Various Performance Metrics for Multi-response Optimization Using Multiple Regression, Computers and Industrial Engineering, 59(4), 976-985. 

  54. Phadke, M. S. (1989), Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, NJ. 

  55. Pukelsheim, F. (2006), Optimal Design of Experiments, Society for Industrial and Applied Mathematics, Philadelphia, PA. 

  56. Robinson, T. J., Borror, C., and Myers, R. H. (2004), Robust Parameter Design : A Review, Quality and Reliability Engineering International, 20(1), 81-101. 

  57. Seo, H. S. and Kwak, B. M. (2002), Efficient Statistical Tolerance Analysis for General Distributions Using Three-point Information, International Journal of Production Research, 40(4), 931-944. 

  58. Seo, S. K. and Choi, J. D. (1994), Robust Parameter Design for Multiple Performance Characteristics, Journal of the Korean Society for Quality Management, 22(3), 34-53. 

  59. Shiau, G. H. (1990), A Study of the Sintering Properties of Iron Ores using the Taguchi's Parameter Design. Journal of Chinese Statistical Association, 28(2), 253-275. 

  60. Shoemaker, A. C., Tsui, K. L., and Wu, C. F. J. (1991), Economical Experimentation Methods for Robust Design, Technometrics, 33(4), 415-427. 

  61. Singh, P. K., Jain, P. K., and Jain, S. C. (2009a), Important Issues in Tolerance Design of Mechanical Assemblies. Part 1 : Tolerance Analysis, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture-Part B, 223(10), 1225-1247. 

  62. Singh, P. K., Jain, P. K. and Jain, S. C. (2009b), Important Issues in Tolerance Design of Mechanical Assemblies. Part 2 : Tolerance Synthesis, Proceedings of the Institution of Mechanical Engineers, Journal of Engineering Manufacture-Part B, 223(10), 1249-1287. 

  63. Soh, W. and Yum, B. J. (2012), A Comparison of Parameter Design Methods for Multiple Performance Characteristics, Journal of the Korean Institute of Industrial Engineers, 38(3), 198-207. 

  64. Su, C. T. and Tong, L. I. (1997), Multi-response Robust Design by Principal Component Analysis, Total Quality Management, 8(6), 409-416. 

  65. Taguchi, G. (1978), Performance Analysis Design, International Journal of Production Research, 16(6), 521-530. 

  66. Taguchi, G. (1986), Introduction to Quality Engineering, Asian Productivity Organization, Tokyo. 

  67. Taguchi, G. (1987), System of Experimental Design, Vols. 1 and 2, UNIPUB/Kraus International Publications, White Plains, NY. 

  68. Taguchi, G. (1988a), Quality Engineering in Research and Development, Quality Engineering Series, Volume 1, JSA, Tokyo (Korean edition published by KSA, 1991). 

  69. Taguchi, G. (1988b), Design of Experiments for Quality Design, Quality Engineering Series, Volume 4, JSA, Tokyo (Korean edition published by KSA, 1991). 

  70. Taguchi, G. (1988c), Quality Engineering Case Studies from Japan, Quality Engineering Series, Volume 5, JSA, Tokyo (Korean edition published by KSA, 1991). 

  71. Taguchi, G. (1990a), Quality Engineering Case Studies from the United States and Europe, Quality Engineering Series, Volume 6, JSA, Tokyo (Korean edition published by KSA, 1991). 

  72. Taguchi, G. (1990b), Quality Engineering Case Studies in Measurement, Quality Engineering Series, Volume 7, JSA, Tokyo (Korean edition published by KSA, 1991). 

  73. Taguchi, G., Chowdhury, S., and Wu, Y. (2005), Taguchi's Quality Engineering Handbook, Wiley, NJ. 

  74. Taguchi, G. and Konishi, S. (1959), Experimental Assignment Methods Using Orthogonal Tables (in Japanese), JUSE Press, Tokyo. 

  75. Tai, C. Y., Chen, T. S., and Wu, M. C. (1992), An Enhanced Taguchi Method for Optimizing SMT Processes, Journal of Electronics Manufacturing, 2(3), 91-100. 

  76. Tarng, Y. S., Juang, S. C. and Chang, C. H. (2002), The Use of Grey-Based Taguchi Methods to Determine Submerged are Welding Process Parameters in Hardfacing, Journal of Material Processing Technology, 128(1-3), 1-6. 

  77. Tong, L. I. and Su, C. T. (1997), Optimizing Multi-response Problems in the Taguchi Method by Fuzzy Multiple Attribute Decision Making, Quality and Reliability Engineering International, 13(1), 25-34. 

  78. Tong, L. I., Chen, C. C., and Wang, C. H. (2007), Optimization of Multiresponse Processes Using the VIKOR Method, International Journal of Advanced Manufacturing Technology, 31(11-12), 1049-1057. 

  79. Tribus, M. and Szonyi, G. (1989), An Alternative View of the Taguchi Approach, Quality Progress, 22(5), 46-52. 

  80. Vining, G. G. and Myers, R. H. (1990), Combining Taguchi and Response Surface Philosophies : A Dual Response Approach, Journal of Quality Technology, 22(1), 38-45. 

  81. Welch, W. J., Yu, T. K., Kang, S. M., and Sacks, J. (1990), Computer Experiments for Quality Control by Parameter Design, Journal of Quality Technology, 22(1), 15-22. 

  82. Wu, C. F. J. and Chen, Y. Y. (1992), A Graph-Aided Method for Planning Two-Level Experiments When Certain Interactions are Important, Technometrics, 34(2), 162-175. 

  83. Wu, C. F. J. and Hamada, M. S. (2009), Experiments : Planning, Analysis, and Optimization, 2nd Ed., Wiley, Hoboken, NJ. 

  84. Wu, F. C. and Yeh, C. H. (2006), A Comparative Study on Optimization Methods for Experiments with Ordered Categorical Data, Computers and Industrial Engineering, 50(3), 220-232. 

  85. Yadav, O. P., Bhamare, S. S., and Rathore, A. (2010), Reliability-Based Robust Design Optimization : A Multi-Objective Framework Using Hybrid Quality Loss Function, Quality and Reliability Engineering International, 26(1), 27-41. 

  86. Yum, B. J., Ko, S. W., and Kim, S. J. (1990), The Taguchi Method for Product and Process Designs, Korean Management Science Review, 7(2), 3-21. 

  87. Yum, B. J., Lee, B. Y., Ko, S. W., and Kim, J. H. (1991), Principles for Constructing Taguchi Experimental Designs, The Korean Journal of Applied Statistics, 4(1), 47-63. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로