$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

고분자 글루테닌 서버유닛(high molecular-weight glutenin subunit, HMW-GS)은 밀의 가공적성을 결정하는데 중요한 역할을 수행한다. 우리는 Agrobacterium 동시 형질전환법을 이용하여 한국 밀 품종인 '조경'으로부터 밀 HMW-GS을 암호화하는 Glu-1Bx7 유전자를 가지는 marker-free 형질전환 벼를 생산하였다. Glu-1Bx7 유전자의 종자 특이적 발현을 위하여 밀 Glu-1Bx7 유전자 자체 프로모터벡터 내에 삽입하였다. 동시 접종을 위해서 오직 Glu-1Bx7 유전자와 hygromycin phosphotransferase II (HPTII) 저항성 유전자만으로 구성된 두 종류의 발현 카셋트를 독립적으로 Agrobacterium EHA105에 도입하였고, Glu-1Bx7와 HPTII가 도입된 각각의 EHA105 Agrobacterium 을 3:1 비율로 혼합하여 벼 캘러스에 접종하였다. 216개의 HPTII 저항성 형질전환체 중에서 벼 게놈에 Glu-1Bx7과 HPTII가 모두 삽입된 24개의 형질전환 라인을 획득하였다. Glu-1Bx7와 HPTII가 벼 게놈에 도입된 것을 Southern blot을 통해서 다시 확인하였다. 형질전환 벼 $T_1$ 세대의 종자에서 밀 Glu-1Bx7 유전자가 전사와 번역되어 오직 Glu-1Bx7만을 가지는 marker-free 식물체를 $T_1$ 세대에서 성공적으로 선발할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

High-molecular weight glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the wheat grain. We have produced marker-free transgenic rice plants containing a wheat Glu-1Bx7 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' usin...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • tumefaciens EHA105 strain for plant transformation. Each binary vector was rescued from the EHA105 strain harboring Glu-1Bx7 and the HPTII, and the HPTII and Glu-1Bx7 genes were validated by PCR analysis.
  • Genomic DNA from 216 independent T0 plants was extracted and insertion of HPTII and Glu-1Bx7 genes was analyzed using PCR analysis with gene specific primers. As shown in Fig.
  • Identification of T0 plants by gene specific primer sets. Glu-1Bx7 (upper panel) and HPTII (lower panel) genes were amplified using Glu-1Bx7 and HPTII specific primer sets, respectively. SM, molecular marker; ‘Dongjin’ (Korean rice cultivar), non-transgenic plant; Jokyeong, Korean wheat cultivar; Plasmid, vector construct containing Glu-1Bx7 and HPTII genes; 1-22, co-transformant transgenic lines.
  • In this study, we cloned Glu-1Bx7, which is one of HMW-GS genes, and validated the insertion of the Glu-1Bx7 gene in T0 plants through PCR analysis with gene specific primers and Southern blot analysis (Fig. 2, 3). The Glu1Bx7-own promoter was introduced for seed specific expression of Glu-1Bx7 gene.
  • PCR was performed with the GeneAmp System 9700 (Applied Biosystems, Foster City, CA, USA) with a gene-specific primer set (Glu-1Bx7; forward 5'- AGGGTACCGAGATGGCTAAGCGCCTGG -3', reverse 5'- GATCTAGATCACTGCCTGGTCGACAATG -3', HPTII; forward 5'- CGCTTCTGCGGGCGATTT -3', reverse 5'- CCCATTCGGACCGCAAGGA -3') and EF Taq DNA polymerase (Solgent Co. Seoul, South Korea).

이론/모형

  • In this study, we generated marker-free transgenic rice expressing the wheat HMW-GS protein without any herbicide or antibiotic resistance marker genes using the co-transformation method. The marker-free transgenic plant expressing Glu-1Bx7 gene is critical material for generating transgenic plant advanced quality processing of bread and noodle without antibiotic markers.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Altpeter, F., Vasil, V., Srivastava, V. and Vasil, I. K. 1996. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14, 1155-1159. 

  2. Alvarez, M. L., Guelman, S., Halford, N. G., Lusting, S., Reggiardo, M. I., Ryabushkina, N., Shewry, P., Stein, J. and Vallejos, R. H. 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100, 319-327. 

  3. An, G., Evert, P. R., Mitra, A. and Ha, S. B. 1988. Binary vectors. pp. A3/1-19, In: Gelvin, S. B. and. Schilperoort, R. A. (eds.), Plant molecular biology manual. Kluwer Academic Publishers, Boston, MA. 

  4. Araki, E., Ikeda, M. T., Ohgihara, Y., Toyoda, A. and Yano, H. 2008. Development of transgenic rice (Oryza sativa L.) expressing wheat high- and low-molecular-weight glutenin subunit proteins. Breed Sci 58, 121-128. 

  5. Barro, F., Rooke, L., Bekes, F., Gras, P., Tatham, A. S., Fido, R., Lazzeri, P. A., Shewry, P. R. and Barcelo, P. 1997. Transformation of wheat with high-molecular-weight subunit genes results in improved functional properties. Nat Biotechnol 15, 1295-1299. 

  6. Blechl, A. E. and Anderson, O. D. 1996. Expression of a novel highmolecular-weight glutenin gene in transgenic wheat. Nat Biotechnol 14, 875-879. 

  7. Chen, H., Nelson, R. S. and Sherwood, J. L. 1994. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16, 664-669. 

  8. Cho, J. I., Ryoo, N., Ko, S., Lee, S. K., Lee, J., Jung, K. H., Lee, Y. H., Bhoo, S. H., Winderickx, J., An, G., Hahn, T. R. and Jeon, J. S. 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224, 598-611. 

  9. Chu, C. C., Wang, C. S., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y. and Yun, B. F. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci China Math 18, 659-668. 

  10. Galili, G. 1989. Heterologous expression of a wheat highmolecular-weight glutenin gene in Escherichia coli. Proc Natl Acad Sci USA 86, 7756-7760. 

  11. Hiei, Y., Ohta, S. Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271-282. 

  12. Hohn, B., Levy, A. A. and Puchta, H. 2001. Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12, 139-143. 

  13. Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10, 165-174. 

  14. Kuiper, H. A., Kleter, G. A., Noteborn, H. P. and Kok, E. J. 2001. Assessment of the food safety issues related to genetically modified foods. Plant J 27, 503-528. 

  15. Kumpatla, S. P., Chandrasekharan, M. B., Iyer, L. M., Li, G. and Hall, T. C. 1998. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3, 97-104. 

  16. Matzke, M. A., Matzke, J. M. and Eggleston, W. B. 1996. Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci 1, 382-388. 

  17. McElroy, D., Zhang, W., Cao, J. and Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163-171. 

  18. Park, S. K., Jung, Y. J., Lee, J. R., Lee, Y. M., Jang, H. H., Lee, S. S., Park, J. H., Kim, S. Y., Moon, J. C., Lee, S. Y., Chae, H. B., Shin, M. R., Jung, J. H., Kim, M. K., Kim, Y. Y., Yun, D. J., Lee, G. O. and Lee, S. Y. 2009. Heat-shock and redox-dependent functional switching of an h-type arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150, 552-561. 

  19. Payne, P. I., Corfield, K. G. and Blackman, J. A. 1979. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theor Appl Genet 55, 153-159. 

  20. Payne, P. I., Corfield, K. G., Holt, L. M. and Blackman, J. A. 1981. Correlations between the inheritance of certain high-molecular-weight subunits of glutenin and breadmaking quality in progenies of six crosses of bread wheat. J Sci Food Agric 32, 51-60. 

  21. Payne, P. I., Law, C. N. and Mudd, E. E. 1980. Control by homologous group 1 chromosomes of the high-molecular- weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58, 113-120. 

  22. Payne, P. I., Nightingale, M. A., Krattiger, A. F. and Holt, L. M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of Britishgrown wheat varieties. J Sci Food Agric 40, 51-65. 

  23. Roberts, L. S., Thompson, R. D. and Flavell, R. B. 1989. Tissue-specific expression of a wheat high-molecular-weight glutenin gene in transgenic tobacco. Plant Cell 1, 569-578. 

  24. Rooke, L., Barro, F., Tatham, A. S., Fido, R., Steele, S., Bekes, F., Gras, P., Martin, A., Lazzeri, P. A., Shewry, P. R. and Barcelo, P. 1999. Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theor Appl Genet 99, 851-858. 

  25. Ramessar, K., Peremarti, A., Gomez-Galera, S., Naqvi, S., Moralejo, M., Munoz, P., Capell, T. and Christou, P. 2007. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res 16, 261-280. 

  26. Shewry, P. R., Halford, N. G. and Tatham, A. S. 1989. The high-molecularweight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surveys Plant Mol Cell Biol l6, 163-219. 

  27. Shewry, P. R., Tatham, A. S., Fido, R., Jones, H., Barcelo, P. and Lazzeri, P. A. 2001. Improving the end use properties of wheat by manipulating the grain protein composition. Euphytica 119, 45-48. 

  28. Tatham, A. S. and Shewry, P. R. 1985. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of alpha-, beta-, gamma- and omega- gliadins. J Cereal Sci 3, 103-113. 

  29. Thompson, B. G., Anderson, R. and Murray, R. G. 1980. Unusual polar lipids of Micrococcus radiodurans strain Sark. Can J Microbiol 26, 1408-1411. 

  30. Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J. C. and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J 16, 651-659. 

  31. Volkov, R. A., Panchuk, I. I. and SchoZ, F. 2003. Heatstress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54, 2343-2349. 

  32. Zhiwu, Li. and Harold, N. T. 2005. Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch. Biotechniques 38, 872-876. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로