$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigated the effects of PAR-2 activation on N-type $Ca^{2+}$ currents ($I_{Ca-N}$) in isolated neurons of the celiac ganglion (CG), which is involved in the sympathetic regulation of mesenteric artery vascular tone. PAR-2 agonists irreversibly diminished voltage-gated $Ca^{2+}$ currents ($I_{Ca}$), measured using the patch-clamp method, in rat CG neurons, whereas thrombin had little effect on $I_{Ca}$. This PAR-2-induced inhibition was almost completely prevented by ${\omega}$-CgTx, a potent N-type $Ca^{2+}$ channel blocker, suggesting the involvement of N-type $Ca^{2+}$ channels in PAR-2-induced inhibition. In addition, PAR-2 agonists inhibited $I_{Ca-N}$ in a voltage-independent manner in rat CG neurons. Moreover, PAR-2 agonists reduced action potential (AP) firing frequency as measured using the current-clamp method in rat CG neurons. This inhibition of AP firing induced by PAR-2 agonists was almost completely prevented by ${\omega}$-CgTx, indicating that PAR-2 activation may regulate the membrane excitability of peripheral sympathetic neurons through modulation of N-type $Ca^{2+}$ channels. In conclusion, the present findings demonstrate that the activation of PAR-2 suppresses peripheral sympathetic outflow by modulating N-type $Ca^{2+}$ channel activity, which appears to be involved in PAR-2-induced hypotension, in peripheral sympathetic nerve terminals.

참고문헌 (35)

  1. al-Ani, B., Saifeddine, M., and Hollenberg, M.D. (1995). Detection of functional receptors for the proteinase-activated-receptor-2-activating polypeptide, SLIGRL-$NH_2$, in rat vascular and gastric smooth muscle. Can. J. Physiol. Pharmacol. 73, 1203-1207. 
  2. Carrier, G.O., and Ikeda, S.R. (1992). TTX-sensitive $Na^+$ channels and $Ca^{2+}$ channels of the L- and N-type underlie the inward current in acutely dispersed coeliac-mesenteric ganglia neurons of adult rats. Pflugers Arch. 421, 7-16. 
  3. Cheung, W.M., Andrade-Gordon, P., Derian, C.K., and Damiano, B.P. (1998). Receptor-activating peptides distinguish thrombin receptor (PAR-1) and protease activated receptor 2 (PAR-2) mediated hemodynamic responses in vivo. Can. J. Physiol. Pharmacol. 76, 16-25. 
  4. Chien, E.K., Sweet, L., Phillippe, M., Marietti, S., Kim, T.T., Wolff, D.A., Thomas, L., and Bieber, E. (2003). Protease-activated receptor isoform expression in pregnant and nonpregnant rat myometrial tissue. J. Soc. Gynecol. Investig. 10, 460-468. 
  5. Chung, S., Ahn, D.S., Kim, Y.H., Kim, Y.S., Joeng, J.H., and Nam, T.S. (2010). Modulation of N-type calcium currents by presynaptic imidazoline receptor activation in rat superior cervical ganglion neurons. Exp. Physiol. 95, 982-993. 
  6. Cicala, C., Pinto, A., Bucci, M., Sorrentino, R., Walker, B., Harriot, P., Cruchley, A., Kapas, S., Howells, G.L., and Cirino, G. (1999). Protease-actibated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo Circulation 99, 2590-2597. 
  7. Cicala, C., Morello, S., Santagada, V., Caliendo, G., Sorrentino, L., and Cirino, G. (2001). Pharmacological dissection of vascular effects caused by activation of protease-activated receptors 1 and 2 in anesthetized rats. FASEB J. 15, 1433-1435. 
  8. Damiano, B.P., Cheung, W.M., Santulli, R.J., Fung-Leung, W.P., Ngo, K., Ye, R.D., Darrow, A.L., Derian, C.K., de Garavilla, L., and Andrade-Gordon, P. (1999). Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J. Pharmacol. Exp. Ther. 288, 671-678. 
  9. Elmslie, K.S., Zhou, W., and Jones, S.W. (1990). LHRH and GTPgamma-S modify calcium current activation in bullfrog sympathetic neurons. Neuron 5, 75-80. 
  10. Emilsson, K., Wahlestedt, C., Sun, M.K., Nystedt, S., Owman, C., and Sundelin, J. (1997). Vascular effects of proteinase-activated receptor 2 agonist peptide. J. Vasc. Res. 34, 267-272. 
  11. Emilsson, V., Arch, J.R., de Groot, R.P., Lister, C.A., and Cawthorne, M.A. (1999). Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett. 455, 170-174. 
  12. Hamilton, J.R., Nguyen, P.B., and Cocks, T.M. (1998). Atypical protease-activated receptor mediates endothelium-dependent relaxation of human coronary arteries. Circ. Res. 82, 1306-1311. 
  13. Hille, B. (1994). Modulation of ion-channel function by G-proteincoupled receptors. Trends Neurosci. 17, 531-536. 
  14. Hollenberg, M.D., Saifeddine, M., and al-Ani, B. (1996). Proteinaseactivated receptor-2 in rat aorta: structural requirements for agonist activity of receptor-activating peptides. Mol. Pharmacol. 49, 229-233. 
  15. Holz, G.G.t., 4th, Rane, S.G., and Dunlap, K. (1986). GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670-672. 
  16. Hughes, K.H., Wijekoon, E.P., Valcour, J.E., Chia, E.W., and McGuire, J.J. (2013). Effects of chronic in-vivo treatments with protease-activated receptor 2 agonist on endothelium function and blood pressures in mice. Can. J. Physiol. Pharmacol. 91, 295-305. 
  17. Hwa, J.J., Ghibaudi, L., Williams, P., Chintala, M., Zhang, R., Chatterjee, M., and Sybertz, E. (1996). Evidence for the presence of a proteinase-activated receptor distinct from the thrombin receptor in vascular endothelial cells. Circ. Res. 78, 581-588. 
  18. Kawabata, A., Kuroda, R., and Hollenberg, M.D. (1999). Physiology of protease-activated receptors (PARs): involvement of PARs in digestive functions. Nihon Yakurigaku Zasshi 114, 173P-179P. 
  19. Kawabata, A., Nakaya, Y., Kuroda, R., Wakisaka, M., Masuko, T., Nishikawa, H., and Kawai, K. (2003). Involvement of EDHF in the hypotension and increased gastric mucosal blood flow caused by PAR-2 activation in rats. Br. J. Pharmacol. 140, 247-254. 
  20. Magazine, H.I., King, J.M., and Srivastava, K.D. (1996). Protease activated receptors modulate aortic vascular tone. Int. J. Cardiol. 53 Suppl, S75-80. 
  21. McGuire, J.J. (2004). Proteinase-activated Receptor 2 (PAR2): a challenging new target for treatment of vascular diseases. Curr. Pharm. Des. 10, 2769-2778. 
  22. McGuire, J.J., Dai, J., Andrade-Gordon, P., Triggle, C.R., and Hollenberg, M.D. (2002). Proteinase-activated receptor-2 (PAR2):vascular effects of a PAR2-derived activating peptide via a receptor different than PAR2. J. Pharmacol. Exp. Ther. 303, 985-992. 
  23. Molderings, G.J., Likungu, J., and Gothert, M. (2000). N-Type calcium channels control sympathetic neurotransmission in human heart atrium. Circulation 101, 403-407. 
  24. Myers, A.C. (1998). $Ca^{2+}$ and $K^+$ currents regulate accommodation and firing frequency in guinea pig bronchial ganglion neurons. Am. J. Physiol. 275, L357-364. 
  25. Nystedt, S., Emilsson, K., Wahlestedt, C., and Sundelin, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91, 9208-9212. 
  26. Roy, S.S., Saifeddine, M., Loutzenhiser, R., Triggle, C.R., and Hollenberg, M.D. (1998). Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides:evidence for receptor heterogeneity. Br. J. Pharmacol. 123, 1434-1440. 
  27. Saifeddine, M., al-Ani, B., Cheng, C.H., Wang, L., and Hollenberg, M.D. (1996). Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br. J. Pharmacol. 118, 521-530. 
  28. Schofield, G.G. (1991). Norepinephrine inhibits a $Ca^{2+}$ current in rat sympathetic neurons via a G-protein. Eur. J. Pharmacol. 207, 195-207. 
  29. Schofield, G.G., and Ikeda, S.R. (1988). Sodium and calcium currents of acutely isolated adult rat superior cervical ganglion neurons. Pflugers Arch. 411, 481-490. 
  30. Shapiro, M.S., Wollmuth, L.P., and Hille, B. (1994). Modulation of $Ca^{2+}$ channels by PTX-sensitive G-proteins is blocked by Nethylmaleimide in rat sympathetic neurons. J. Neurosci. 14, 7109-7116. 
  31. Shimosawa, T., Takano, K., Ando, K., and Fujita, T. (2004). Magnesium inhibits norepinephrine release by blocking N-type calcium channels at peripheral sympathetic nerve endings. Hypertension 44, 897-902. 
  32. Sobey, C.G., and Cocks, T.M. (1998). Activation of proteaseactivated receptor-2 (PAR-2) elicits nitric oxide-dependent dilatation of the basilar artery in vivo. Stroke 29, 1439-1444. 
  33. Sobey, C.G., Moffatt, J.D., and Cocks, T.M. (1999). Evidence for selective effects of chronic hypertension on cerebral artery vasodilatation to protease-activated receptor-2 activation. Stroke 30, 1933-1940; discussion 1941. 
  34. Sosa, Z.Y., Casais, M., Rastrilla, A.M., and Aguado, L. (2000). Adrenergic influences on coeliac ganglion affect the release of progesterone from cycling ovaries: characterisation of an in vitro system. J. Endocrinol. 166, 307-318. 
  35. Whorlow, S.L., Angus, J.A., and Wright, C.E. (1996). SELECTIVITY OF -CONOTOXIN GVIA FOR N-TYPE CALCIUM CHANNELS IN RAT ISOLATED SMALL MESENTERIC ARTERIES. Clin. Exp. Pharmacol. Physiol. 23, 16-21. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일