$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

근대 과학자와 예술가의 사례를 통해 살펴 본 융복합교육으로서의 과학교육: 과학과 예술을 중심으로
Implications of Science Education as Interdisciplinary Education through the Cases of Scientists and Artists in the Modern Era: Focus on the Relationship Between Science and the Arts 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.34 no.8, 2014년, pp.755 - 765  

조헌국 (단국대학교)

초록
AI-Helper 아이콘AI-Helper

통섭 또는 융복합은 오늘날 매우 많은 관심을 받고 있다. 이에 본 연구에서는 과학과 예술의 통합을 시도한 근대 과학자와 예술가들의 발견 과정을 중심으로 융복합의 특징을 살펴보고, 근대의 사회철학적 배경을 고려함으로써 오늘날 과학교육이 융복합교육으로서 필요한 과제와 방향에 대해 논의하고자 한다. Netwon, Kepler, Galileo 등의 근대 과학자들은 예술의 사실적 묘사와 같은 방법을 통해 과학 지식을 표현하고 추론하는 데 활용하였으며, 예술과 과학의 규칙과 대응 관계를 통해 새로운 이론을 주장하고자 하였다. 예술가들 역시 과학을 통해 보다 사실적인 현상의 묘사를 힘썼으며, 특히 선원근법을 중심으로 한 해부학과 광학에 주로 의존하였다. 또한 과학자들과 예술가들 모두 유비 추리를 통한 일종의 "빌려오기"를 통한 융복합을 시도하였다. 이는 시기적으로 신플라톤주의의 영향을 받은 것으로 해석할 수 있다. 당시의 과학자들은 상황이나 장소에 대한 구분 없이 적용되는 보편타당한 법칙과 방법을 추구하였으며, 예술과의 융합을 통해 과학 지식을 예술에 접목시키기도 하고 예술의 유용한 도구를 과학적 발견에 활용하기도 하였다. 따라서 오늘날 융복합교육으로서의 과학교육은 학생들에게 보다 전체적인 관점에서 바라볼 수 있도록 해야 하며, 과학과 예술 간의 통합을 통한 아이디어 창출을 목표로 과학과 예술 간의 상호 보완적인 관계를 중심으로 초학문적 시도를 장려해야 한다. 또한, 협동학습의 조직 및 관련되는 평가 기준의 마련을 통해 집단적 창의성을 증진시키고 일상 맥락에서의 문제 해결을 통한 경험을 강조해야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

The convergence and consilience in education (hereafter, interdisciplinary education) is receiving great attention from societies. This study aims to investigate the works of scientists and artists who have intended to combine science with the arts in the modern era, to take into account the socio-p...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
각국의 과학교육 공식 문서에서 강조하는것은 무엇인가? 특히 최근 일어나고 있는 각국의 과학교육 공식 문서에서는 통합과 관련된 기능이 강조되고 있다. 우리나라 2009 개정 교육과정에서는 실생활의 문제해결과 탐구 능력을 강조함으로써 융합인재교육(STEAM) 이 표제어로 제시되었으며(MEST, 2011), 2015년에는 문 · 이과 통합 교육과정이 구성 중에 있다.
과학과 예술의 통합과 관련된 과학자 및 예술가를 대상으로 한 본 연구에서 선정된 예술가들은 누구인가? 해당 시기 중 연구 대상은 당시에 출생하고 활동한 인물 중 과학과 예술의 통합과 관련된 과학자 및 예술가를 대상으로 선정하였다. 예술가의 경우, 근대 시기에 출생해 활동한 화가 중, 르네상스 초기인 사실주의 화풍을 따르며 선원근법 및 해부학과 관련된 Giotto, Alberti, Durer와 해부학과 관련된 da Vinci와 Michelangelo을 대상으로 선정하였다. 과학의 경우, 예술적 아이디어를 활용한 과학자들로, 과학혁명의 시초가 된 천문학 혁명과 관련된 과학자들을 주로 살펴보았다 (Cushing, 1998; Kim et al.
과학교육에 대한 관심이 증가하는 이유는 무엇인가? 오늘날 과학기술의 발전은 현대 사회의 생활의 변화를 가져 왔으며, 과학기술을 통한 부가가치로 인해 과학이 경제성장의 주요 동력원으로 여겨지면서 과학교육에 대한 관심이 증대되고 있다. 최근 발표된 미국의 차세대과학교육기준(Next Generation Science Standards; NGSS)에서는 기술과 공학 분야의 내용 및 실천이 구체적으로 기술되어 있으며, 싱가포르의 초·중등교육과정에서는 발명적 사고와 활동을 강조하며, 우리나라의 2009 개정 교육과정에서도 첨단과학기술이 강조된 융합인재교육이 강조되었다(Ministry of Education, 2013; Ministry of Education, Science and Technology(MEST), 2011; National Research Council, 2012).
질의응답 정보가 도움이 되었나요?

참고문헌 (84)

  1. Ahn, J., & Kwon, N. (2012). The analysis on domestic research trends for convergence and integrated science education. Journal of Korean Association for Science Education, 32(2), 265-278. 

  2. American Association for the Advancement of Science (AAAS). (1989). Science for all Americans: Project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: AAAS. 

  3. American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy: a project 2061 report. New York: Oxford University Press. 

  4. Assier, P. (2014). Laser light art. Retrieved from http://www.thewestrologist.com/tag/alberti/ 

  5. Aston, P., Martin, E., Bassler, M., & Toman, R. (2000). Neoclassicism and romanticism: architecture, sculpture, painting, drawings, 1750-1848. Cologne: Konemann. 

  6. Baigrie, B. S. (1996). Picturing knowledge: historical and philosophical problems concerning the use of art in science. Toronto: University of Toronto Press. 

  7. Baigrie, B. S. (2007). Electricity and magnetism: a historical perspective. London: Greenwood Press. 

  8. Baigrie, B. S. (Ed.). (2002). History of modern science and mathematics. New York: Charles Scribner's Sons. 

  9. Bang, D., Park, E., Yoon, H., Kim, J., Lee, Y., Park, J., . . . Lee, H. (2013). The design of curricular framework for integrated science education based on big ideas. Journal of the Korean Association for Science Education, 33(5), 1041-1054. 

  10. Brooks, M. (2009). Drawing, visualization and young children's exploration of big ideas. International Journal of Science Education, 31(3), 319-341. 

  11. Butts, R. E. (1968). William Whewell's theory of scientific method. Pittsburgh: University of Pittsburgh Press. 

  12. Copleston, F. C. (1952). Medieval philosophy. London: Methuen. 

  13. Crombie, A. C. (1996). Science, art, and nature in medieval and modern thought. London, U.K.: Hambledon Press. 

  14. Curriculum Standing Committee of National Education Professional Associations (CSCNEPA). (2007). Developing a 21st century school curriculum for all Australian students. Retrieved from http://www.acsa.edu.au/pages/images/CSCNEPA_paper_June087.pdf 

  15. Cushing, J. T. (1998). Philosophical concepts in physics: the historical relation between philosophy and scientific theories. New York: Cambridge University Press. 

  16. Drake, S. M., & Burns, R. C. (2004). Integrated curriculum. VA: Association for Sipervision and Curriculum Development. 

  17. Eknoyan, G. (2000). Michelangelo: art, anatomy, and the kidney. Kidney International, 57, 1190-1201. 

  18. Ferguson, G. (1954). Signs and symbols in Christian art. London, U.K.: Oxford University Press. 

  19. Ferguson, K. (2013). Tycho and Kepler: the unlikely partnership that forever changed our understanding of the heavens: Transworld. 

  20. Fogarty, R. (2009). How to integrate the curricula. Thousand Oaks, CA: Corwin Press. 

  21. Galilei, G., & Helden, A. v. (2000). Sidereus nuncius. Palo Alto, CA: Octavo. 

  22. Galili, I., & Zinn, B. (2007). Physics and art - a cultural symbiosis in physics education. Science & Education, 16, 441-460. 

  23. Glick, T. F., Livesey, S. J., & Wallis, F. (Eds.). (2005). Medieval science, technology and medicine: an encyclopedia. New York: Routledge. 

  24. Gombrich, E. H. (2000). Art and illusion: a study in the psychology of pictorial representation. Princeton: Princeton University. 

  25. Gombrich, E. H. (2006). The story of art. New York: Phaidon Press. 

  26. Gribbin, J. (2002). Science: a history, 1543-2001. New York: Allen Lane. 

  27. Han, H., & Lee, H. (2012). A study on the teachers' perceptions and needs of STEAM education. Journal of Learner-Centered Curriculum and Instruction, 12(3), 573-603. 

  28. Harman, P. M. (1980). Energy, force and matter. New York: Cambridge University Press. 

  29. Heilbron, J. L. (1999). Electricity in the 17th and 18th centuries: a study of early modern physics. Mineola, NY: Dover Publications. 

  30. Hesse, M. B. (1962). Force and field: the concept of action at a distance in the history of physics. Philosophy of Science, 29(4), 434-435. 

  31. Hodson, D. (2008). Towards scientific literacy: A teachers' guide to the history, philosophy and sociology of science. Rotterdam, The Netherlands: Sense Publishers. 

  32. Huff, T. E. (2003). The rise of early modern science: Islam, China and the West. New York: Cambridge University Press. 

  33. Jho, H. (2014). Implications of the relationship between science and art in the twentieth century for science education. New Physics: Sae Mulli, 64, 550-559. 

  34. Kang, T. (1996). Art, truth, science. Seoul: Jaewon. 

  35. Kepler, J. (1619). Harmonices mundi libri V. Original from the Bavarian State Library. 

  36. Kim, H. (2012). A study on relation and importance of art education in STEAM education. Studies in Basic Design & Art, 13(5), 105-113. 

  37. Kim, W. (2012). Building conceptual framework to bring up talents capable of creative fusion: from the perspective of fusion between science and technology and art. The Journal of the Korean Society for the Gifted and Talented, 11(1), 97-119. 

  38. Kim, W.-D. (1997). Modernism and postmodernism. Seoul: Hyunamsa. 

  39. Kim, Y., Seo, H.-A., & Park, J. (2013). An analysis on problem-finding patterns of well-known creative scientists. Journal of the Korean Association for Science Education, 33(7), 1285-1299. 

  40. Kim, Y., Park, S., & Song, S. (2013). History of science. Seoul: Jeonpa-Gwahaksa. 

  41. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. 

  42. Lee, K.-J., & Kim, K.-J. (2012). Exploring the meaning and practicability of Korea STEAM education. The Journal of Elementary Education, 25(3), 55-81. 

  43. Lelliott, A., & Rollnick, M. (2010). Big ideas: a review of astronomy education research 1974-2008. International Journal of Science Education, 32(13), 1771-1799. 

  44. Lloyd, G. E. R. (2012). Early greek science: Thales to Aristotle. New York: Random House. 

  45. Mahon, B. (2003). The man who changed everything. Chicester: Wiley. 

  46. Martin, C. F. J. (1996). An introduction to medieval philosophy. Edinburgh: Edinburgh University Press. 

  47. Maxwell, J. C. (1881). A treatise on electricity and magnetism. Oxford, U. K.: Clarendon Press. 

  48. Meshberger, F. L. (1990). An interpretation of Michelangelo's creation of Adam based on neuroanatomy. The Journal of the American Medical Association, 264(14), 1837-1841. 

  49. Miller, A. I. (1996). Insights of genius: imagery and creativity in science and art. New York: Copernicus. 

  50. Ministry of Education. (2013). Science syllabus primary 2014. Singapore, Singapore: Curriculum Planning & Development Division. 

  51. Ministry of Education Science and Technology(MEST). (2011). National Science Curriculum. Seoul, Korea: MEST. 

  52. Na, S., & Kwon, N. (2014). Exploring domestic and international elementary school convergence science education program: Korea, the U.S., and the U. K. Journal of Korean Elementary Science Education, 33(2), 231-241. 

  53. National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, D.C.: National Academy of Sciences. 

  54. Neressian, N. J. (1984). Aether/or: the creation of scientific concepts. Studies in History and Philosophy of Science, 15(3), 175-212. 

  55. New Zealand Ministry of Education. (2007). The New Zealand curriculum. New Zealand: Ministry of Education. 

  56. Organisation for Economic Co-operation and Development (OECD). (2001). Definition and selection of competencies: theoretical and conceptual foundations (DeSeCo). Retrieved from http://www.oecd.org/education/skills-beyond-school/41529556.pdf 

  57. Park, J.-H., & Lee, J.-H. (2013). A systematic review of the studies of integrative education. Asian Journal of Education, 14(1), 97-135. 

  58. Parkinson, G. (2008). Surrealism, art, and modern science: relativity, quantum mechanics, epistemology. London, U.K.: Yale University Press. 

  59. Pedretti, C. (2004). Leonardo: art and science. Cobham, U.K.: TAJ Books. 

  60. Petrie, H. G. (1992). Interdisciplinary education: are we faced with insurmountable opportunities? Review of Research in Education, 18, 299-333. 

  61. Princeton University. (1996). The partnership of art and science: the moon of Cigoli and Galileo. Retrieved from http://www.princeton.edu/-freshman/science/galileo/galileo.html 

  62. Ro, S.-W., & An, D.-S. (2012). A study on direction of development in STEAM education. The Journal of Education Research, 10(3), 75-96. 

  63. Ross, W. D. (1953). Plato's theory of ideas. Oxford: Clarendon Press. 

  64. Ross, W. D. (1960). Aristotle: a complete exposition of his works & thought. New York: Meridian Books. 

  65. Shirley, J. W., & Hoeniger, F. D.(Eds.). (1985). Science and the arts in the Renaissance. Washington, D.C.: Folger Shakespeare Library. 

  66. Shlain, L. (1993). Art and physics: parallel visions in space, time, and light. New York: Quill/W. Morrow. 

  67. Solomon, J., & Aikenhead, G. S. (Eds.). (1994). STS education: international perspectives on reform. New York: Teachers College Press. 

  68. Son, D. H. (2008). Demands of convergent education & teaching philosophy at universities. Philosophical studies, 83, 231-261. 

  69. Son, Y.-A., Pottenger III, F. M., King, A., Young, D. B., & Choi, D.-H. (2001). Theory and practice of curriculum design for integrated science education. Journal of the Korean Association for Research in Science Education, 21(1), 231-254. 

  70. State University of New York (SUNY). (1993). Albrecht Durer: artist drawing a nude with perspective device. Retrieved from https://www.oneonta.edu/faculty/farberas/arth/arth200/durer_artistdrawingnude.html 

  71. Strosberg, E. (2001). Art and science. New York: Abbeville Press. 

  72. Suh, Y.-S. (2012). Philosophical underpinnings and theoretical foundations of convergent education. Journal of the New Korean Philosophical Association, 67, 145-163. 

  73. Suk, I., & Tamargo, R. J. (2010). Concealed neuroanatomy in Michelangelo's seperation of light from darkness in the Sistine chapel. Neurosurgery, 66(5), 851-861. 

  74. Trifogli, C. (2000). Oxford physics in the thirteenth century: motion, infinity, place and time. Leiden: Brill. 

  75. Turner, H. (1996). Religion: impediment or saviour of science? Science & Education, 5(2), 155-164. 

  76. Vitz, P. C., & Glimcher, A. B. (1984). Modern art and modern science: the parallel analysis of vision. New York: Praeger. 

  77. Voelkel, J. R. (2006). Johannes Kepler and the new astronomy (Y. Park, Trans.). Seoul: Bada. 

  78. Weisberg, R. W. (2006). Creativity: understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: John Wiley & Sons. 

  79. Wenger, E. (1998). Communities of practice: learning, meaning and identity. New York: Cambridge University Press. 

  80. Wilson, E. O. (2007). Consilience: the unity of knowledge (J. Choi and D. Jang, Trans.). Seoul: Science Books. 

  81. Wineburg, S. S., & Grossman, P. L. (Eds.). (2000). Interdisciplinary curriculum: challenges to implementation. New York: Teachers College Press. 

  82. Woo, J.-H., & Yoo, M.-H. (2013). Analysis of the cases in elementary STEAM programs' convergence and integration type for the gifted. Journal of Science Education for the Gifted, 5(2), 82-95. 

  83. Yakman, G. (2007). STEAM education: an overview of creating a model of integrative education. Paper presented at the ITEEA annual conference. 

  84. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research-based framework for socioscientific issues education. Science Education, 89(3), 357-377. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로