$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] ALE 기법이 적용된 수치해석을 통한 점토지반에서 석션 매입 앵커의 인발 저항력 평가
Evaluation of Pullout Capacity of Embedded Suction Anchors in Uniform Clay using Numerical Analysis with ALE(Arbitrary Lagrangian Eulerian) Technique 원문보기

한국산학기술학회논문지 = Journal of the Korea Academia-Industrial cooperation Society, v.15 no.4, 2014년, pp.2428 - 2435  

나선홍 (한국해양과학기술원 연안개발에너지연구부) ,  장인성 (한국해양과학기술원 연안개발에너지연구부) ,  권오순 (한국해양과학기술원 연안개발에너지연구부) ,  이승현 (선문대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

해상에 활용되는 계류앵커형식 중 한 종류인 석션 매입 앵커(Embedded Suction Anchor; ESA)의 점토지반에서 인발 저항력을 평가하기 위해 ALE(Arbitrary Lagrangian Eulerian) Adaptive Meshing기법을 적용한 수치해석을 수행하였다. 기존에 수행된 원심모형 실험한계 평형법을 이용한 해석적 방법의 결과와 비교 분석을 통해 수치해석 기법을 검증하고, 이를 이용해 앵커의 수평, 연직, 그리고 경사 방향의 인발 저항력을 평가하였다. 더불어 경사 방향의 재하 이전에 앵커를 경사각만큼 회전시켜 앵커에 수직한 방향으로 인발이 가해지도록 하여 그 거동을 평가하였다. 그 결과, 수평 재하 시 중간 위치에서 가장 큰 저항이 발휘되었고, 연직 재하의 경우 재하 위치에 따른 저항력의 차이가 크게 나타나지 않았다. 앵커의 중간 위치에서 경사 재하 결과 경사각이 증가할수록 인발 저항력이 감소하였으며, 초기회전이 있는 앵커의 경우 초기회전각이 30도 이하일 때 인발저항력이 일정한 결과를 보였다.

Abstract AI-Helper 아이콘AI-Helper

Numerical analysis with ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to evaluate the pullout capacity of the embedded suction anchors (ESA) in uniform clay. The numerical method was verified by the previous study, analytical results based on limit-equilibrium theory a...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 점토지반에서 ESA의 인발 저항력을 효과적으로 평가하기 위해 ABAQUS/Explicit에서 제공되는 ALE(Arbitrary Lagrangian Eulerian) Adaptive Meshing을 적용하여 수치해석을 수행하였다.
  • 4에 나타내었으며, 설치 초기 인위적인 회전을 통해 ESA의 인발 저항 증가 효과를 평가에 적용되는 초기 회전각도(β)도 함께 나타내었다. 이를 바탕으로 수평, 연직, 경사 인발에 따른 앵커의 저항력과 초기 회전을 가지는 ESA의 인발 저항력을 평가하였다. 기존 연구에 따르면 최대 인발 저항력은 수평 방향 재하 시 인발 작용점이 ESA의 중앙부에 위치할 때 발현되며, 이때 ESA는 순수한 평행이동과 유사한 거동을 보이게 된다.
  • 기존 연구에 따르면 최대 인발 저항력은 수평 방향 재하 시 인발 작용점이 ESA의 중앙부에 위치할 때 발현되며, 이때 ESA는 순수한 평행이동과 유사한 거동을 보이게 된다. 따라서 경사재하 시 경사각과 동일하게 ESA에 초기 회전을 부여해 앵커 면에 수직한 방향으로 재하가 이루어지도록 하여 그 효과를 평가하고자 하였다.
  • 수치해석에서 사용된 지반의 물성치뿐만 아니라 지반에 대한 구성 방정식, 지반-구조물 간의 경계 마찰에 관한 식들이 해석해의 가정과 상이하기 때문에 본 연구에서는 인발저항력의 정성적인 비교를 통해 수치해석 결과의 신뢰성을 검증하고자 하였다. 인발 작용점에 따른 수평방향 저항값을 최대 저항력이 발현된 앵커 중심부 수평 인발 저항력으로 나눈 무차원값을 도입하였으며 이에 대한 정의를 Eq.
  • 그러나 실제로 ESA가 시공된 후 계류 앵커 형식으로 사용될 경우에는 주로 경사 하중에 저항하게 된다. 이에 따라 인발 작용점과 경사 각도를 달리하여 경사 인발 시 저항력을 평가하고자 해석을 수행하였다. 인발 작용점은 ESA의 0.

가설 설정

  • 그 결과, 수평 방향 인발 저항력은 인발 작용점이 앵커의 중심에 있을 때 최댓값이 나타났으며, 인발 작용점이 중앙부에서 끝단으로 이동 할수록 수평 방향 인발 저항력이 감소하여 최대 인발 저항력의 50% 정도 나타났다. 최대 인발 저항력이 나타났을 때 앵커는 회전 운동이 거의 없는 순수한 평행 이동의 거동을 보이는 것으로 가정하였다.
  • 3차원 범용 유한요소 해석 프로그램인 ABAQUS /Explicit[9]를 이용해 ALE Adaptive Meshing기법을 적용하고 점토지반에 설치된 ESA에 대한 수치해석을 수행하였다. 기존 연구[2]에서 사용한 ESA의 원형을 이용해 모델링하였으며 앵커는 지표로부터 앵커 상단까지가 목표 심도 6.0m에 매입되어 있는 상태를 초기 조건으로 가정하였다. 점토는 비배수 조건을 적용해 Tresca yield criterion을 사용하고, 일정한 부피 모사를 위해 포아송비는 0.
  • 49로 하였다[10]. 앵커는 강재로 가정해 선형-탄성모델을 적용하였다. Table1에 수치해석에서 사용한 앵커와 지반의 입력물성을 정리하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
석션 매입 앵커란? 해상에 활용되는 계류앵커형식 중 한 종류인 석션 매입 앵커(Embedded Suction Anchor; ESA)의 점토지반에서 인발 저항력을 평가하기 위해 ALE(Arbitrary Lagrangian Eulerian) Adaptive Meshing기법을 적용한 수치해석을 수행하였다. 기존에 수행된 원심모형 실험과 한계 평형법을 이용한 해석적 방법의 결과와 비교 분석을 통해 수치해석 기법을 검증하고, 이를 이용해 앵커의 수평, 연직, 그리고 경사 방향의 인발 저항력을 평가하였다.
석션 기초는 무엇이며 어디에 활용되는가? 석션 기초는 다양한 종류의 해상 구조물에 적용할 수있는 기초의 한 형태로, 기초 내부와 외부의 압력차를 이용한 설치 석션 메커니즘은 석션 기초 뿐 아니라 다른 형태의 계류-앵커의 설치에 활용되기도 한다. 그 중 석션 기초와 동일한 형태의 단면 형상을 가지는 석션 매입 앵커(EmbeddedSuctionAnchor;ESA)는 국내 대우건설에의해 개발되어 부유 식 방파제의 계류 장치로 사용된 사례가 있다[1].
3차원 범용 유한요소해석 프로그램ABAQUS/Explicit을 이용하여 ALE기법을 적용한 수치해석을 통해 점토지반에 매입된 석션 앵커(ESA)의 인발저항력을 산정한 결과는? (1) 인발작용점 위치가 다른 조건 하에서 수치해석을통해 산정된 수평 저항력은 기존 원심모형 및 해석해를 통해 도출된 결과와 매우 유사한 경향을보였다. 최대 수평 저항력은 인발 작용점이 앵커의 중앙에서 나타났고, 앵커 하단에 인발 작용점이 위치할 때 인발저항력은 해석해 결과와 비교해약 17% 크게 나타났다. (2) 수직 인발 저항력은 인발 작용점이 하부로 갈수록 감소하는 경향을 보였으나 큰 차이가 나타나지는않았다. 수직 인발 저항력은 평균적으로 최대 수평저항력의 약 60% 해당되는 결과를 보였다. (3) 경사 인발 조건에서 인발 작용점이 앵커 상단에 있을 때는 경사 각도에 따른 인발저항력이가 크게 나타나지 않았으나, 앵커 중앙부에서 하단으로 갈수록 경사 각도가 증가함에 따라 저항력이 감소하는결과를 보였다. 최소 경사 인발 저항력은 최대 저항력 대비 약 45%의 값을 보였으며, 인발 작용점의 위치가 0.9, 경사각도가 45°일 때 나타났다. (4) 초기 회전각을 부여한 ESA에 경사 인발이 가해진 경우 인발저항력의 증가효과는 미미한 것으로 나타났다. 그러나 초기 회전 및 경사각도가 30°이하인 조건에서 최대 수평 저항력에 준하는 결과를보여 경사각도가 증가하더라도 일정한 저항력을발휘할 수 있는 것으로 나타났다.
질의응답 정보가 도움이 되었나요?

참고문헌 (10)

  1. T. H. Kim, Y. S. Kim, K. O. Kim, Y. Cho, K. I. Lee, "Centrifuge model tests on embedded suction anchor pullout capacity in clay layer", Proceedings of the International Conference of Physical Modelling in Geotechniques, London: Taylor & Francis Group, pp.533-538, 2006. 

  2. S. Bang, K. D. Jones, Y. S. Kim Y. Cho, "Horizontal capacity of embedded suction anchors in clay", Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2007-29115, Sand Diego, California, USA: ASME, 2007. 

  3. D. J. Benson, "An efficient, accurate, simple ale method for non-linear finite-element program", Computer Methods in Applied Mechanics and Engineering, 72(3), pp.305-350, 1989. DOI: http://dx.doi.org/10.1016/0045-7825(89)90003-0 

  4. S. Gosh, N. Kikuchi, "An Arbitrary Lagrangian -Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids", Comp. Methods in Applied Mechanics and Engineering, 86(2), pp,127-188, 1991. 

  5. Z. Song, Y. Hu, M. F. Randolph, "Numerical simulation of vertical pullout of plate anchors in clay", Journal of geotechnical and geoenvironmental engineering, 136(4), pp.866-875, 2008. DOI : http://dx.doi.org/10.1061/(ASCE)1090-0241(2008) 134:6(866) 

  6. L. Yu, J. Liu, X. J. Kong, Y. Hu, "Three dimensional numerical analysis of the keying of vertically installed plate anchors in clay", Comp. and Geotechnics, 36(4), pp.558-567, 2009. DOI: http://dx.doi.org/10.1016/j.compgeo.2008.10.008 

  7. D. Wang, Y. Hu, M. F. Randolph, "Three- dimensional large deformation finite element analysis of plate anchors in uniform clay", Journal of Geotechnical and Geoenvironmental Engineering, 136(2), pp.355-365, 2010. DOI: http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000210 

  8. Dassault Systems, ABAQUS, Version 6.12 Documentation, 2012 

  9. Y. Hu, M. F. Randolph, "A practical numerical approach for large deformation problems in soil", International Journal for Numerical and Analytical Methods in Geomechanics, 22(5), pp.327-350, 1998. D O I : http://dx.doi.org/10.1002/(SICI)1096-9853 (199805)22:5 3.0.CO;2-X 

  10. L. C. Hung, S. R. Kim, "Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay", Ocean Engineering, 52, pp.75-82, 2012. DOI: http://dx.doi.org/10.1016/j.oceaneng.2012.06.001 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로