$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

뇌자기공명영상의 노화에 따른 변화
A Review of Brain Magnetic Resonance Imaging Correlates of Successful Cognitive Aging 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.21 no.1, 2014년, pp.1 - 13  

지은경 (동남권원자력의학원 영상의학과) ,  정인원 (동국대학교 일산병원 정신건강의학과) ,  윤탁 (동국대학교 일산병원 정신건강의학과)

Abstract AI-Helper 아이콘AI-Helper

Normal aging causes changes in the brain volume, connection, function and cognition. The brain changes with increases in age and difference of gender varies at all levels. Studies about normal brain aging using various brain magnetic resonance imaging (MRI) variables such as gray and white matter st...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 5) 부검을 통한 연구는 부검 연구라는 연구 방법의 한계로 인하여, 연구들이 활발히 이루어지지 못하였으나, MRI의 개발 이후, 뇌자기공명영상을 이용한 많은 연구들이 진행되었다. 뇌자기공명영상을 이용하여 뇌 무게 측정을 하기보다는 뇌 부피를 측정하는 방법으로 연구가 되었다. Hedman 등6)은 56개의 뇌자기공명영상 연구 결과를 종합하여, 뇌 전체의 부피는 출생 후 만 9세까지 매년 약 1%씩 증가하며, 이후 만 9세에서 만 13세 사이 시기에는 뇌 전체의 부피가 감소되는 시기가 시작되어, 이후 지속적으로 약간씩 감소하고, 이러한 감소는 만 18세까지 계속된다고 하였다.
  • 뇌자기공명영상(brain MRI)은 촬영 기술 및 분석 방법에 있어서 계속적으로 발전하고 있으며, 노화에 따른 뇌의 구조적 변화뿐만 아니라, 이전까지 알기 어려웠던 미세한 뇌의 백질과 회백질 등의 미세한 변화를 관찰할 수 있도록 해주어, 임상가들에게 많은 정보를 제공하고 있다. 본 논문에서는 뇌자기공명영상에서 관찰할 수 있는 백질과 회백질의 구조적 변화, 양성자 분광법(proton spectroscopy), 현성확산계수(apparent diffusion coefficient, 이하 ADC), 확산텐서영상(diffusion tensor imaging, 이하 DTI), 기능적 자기공명영상(function MRI, 이하 fMRI)에서 관찰되는 정상적인 노화에 따른 뇌의 변화 및 남녀 성별에 따른 차이 등에 대하여 최근까지 보고된 연구결과들을 정리하여, 정상 뇌 노화의 MRI 소견을 논의하고자 한다.

가설 설정

  • 즉, heteromodal cortex(일반적으로 parietal-temporal-occipital cortex와 prefrontal cortex로서 여러 형태의 감각자극, 정보를 받는 부위를 말한다)는 49세, 변연계는 50세, unimodal cortex(heteromodal cortex의 반대 개념)는 53세, 변연주위부 피질은 55세, 일차 체감각피질은 56세, 피질하 회백질핵은 58세에 곡선의 커브가 나타난다고 하였으며, 이 또한 뇌에서 늦게 성숙되는 부위가 먼저 노화의 현상을 보인다는 가설을 뒷받침하고 있다.125) 시각 피질 부위는 노화에 따른 좌우피질 동시성의 감소는 적다.126)
  • Confluent lesion은 허혈성 병변으로 광범위한 periventricular rarefaction of myelin, mild to moderate fiber loss와 다양한 정도의 신경아교증(gliosis)을 포함한 조직의 손상이 연속적인 증가를 반영한다.41) Punctate lesion은 진행이 비교적 느리지만 early confluent lesion으로 일단 진행된 경우 그 범위는 빠르게 증가된다.41)46)그러므로, 병리 소견과 함께 고려할 때, punctate lesion은 복합적 원인의 비교적 양성 병변으로 볼 수 있으며, confluent lesion은 허혈성의 진행성 악성 병변이라고 볼 수 있다.
  • B : Multiple punctate deep WMLs. C : Multiple punctate deep WMLs begin confluence. D : Confluent deep WMLs.
  • C : Multiple punctate deep WMLs begin confluence. D : Confluent deep WMLs.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
뇌자기공명영상을 이용해 뇌의 백질과 회백질을 분리하여 관찰한 결과, 소아기를 기준으로 뇌 회백질의 부피 변화는? 뇌의 회백질과 백질은 일정하게 항상같이 변화되지 않는다. 뇌의 회백질은 소아기 때 그 부피가 계속 증가되는 양상을 보이다가, 소아기 이후 감소되며, 뇌의 백 질은 만 45~50세까지 꾸준히 증가한 후, 이후 감소하여 뒤집 어진 U 형태의 부피 변화를 보인다.6)23) 이처럼 뇌의 회백질과 백질이 최고 부피 용적을 보이는 시기가 서로 다르다는 연구 결과와 만 18세에서 만 35세 시기에 전체 뇌 부피가 약간 증가하는 것을 같이 고려하면, 청년 시기에 뇌의 백질의 부피 증가 비율이 회백질의 부피 감소 비율보다 크다는 것을 알 수 있다.
기능적, 구조적, 인지척 측면에서 뇌의 변화를 관찰할 때, 구조적 관점에서의 관찰이 갖는 장점은? 알츠하이머(Alzheimer) 치매 등의 퇴행성 뇌질환은 조기 발견 및 조기 치료가 효과적이며, 일차적으로 예방을 하는 것이 매우 중요하기 때문에, 노화에 따른 질환을 동반하지 않으며 기능적, 신체적, 정신사회적 측면에서 건강한 상태를 일컫는 성공적인 노화(successful brain aging)2)와 퇴행성 뇌질환의 뇌 변화를 초기에 구분할 필요성이 높아지고 있다. 성공적인 노화, 즉 건강한 노화에 따른 뇌의 변화는 기능적, 구조적, 인지적 측면에서 다양하게 보고되고 있는데, 구조적 관점에서 건강한 뇌의 노화에 대한 변화를 관찰하는 것이 실제 임상 현장이나 연구 분야에서 보다 용이하게 뇌의 노화를 관찰할 수 있으며, 지속적으로 노화 현상을 추적할수 있는 장점이 있다. 이러한 퇴행성 뇌질환의 뇌 구조의 변화뿐만 아니라, 신약의 개발과 치료 기술의 발전으로 인하여, 임상적으로 퇴행성 질환이 아닌, 신경발달학적 질환으로 여기고 있는 조현병, 조울병 등3)4) 의 환자들이 정상적인 사회 생활을 하면서 퇴행성 노화 과정을 겪는 경우가 빈번해지고 있다.
성공적인 노화란 무엇인가? 1) 이러한 급속한 고령화 사회로의 진입은 필연적으로 노인 질환의 증가를 유발하며, 특히 퇴행성 뇌질환인 치매 등에 대한 연구 및 치료 방법 개발에 많은 집중적인 투자가 필요한 것이 현실이다. 알츠하이머(Alzheimer) 치매 등의 퇴행성 뇌질환은 조기 발견 및 조기 치료가 효과적이며, 일차적으로 예방을 하는 것이 매우 중요하기 때문에, 노화에 따른 질환을 동반하지 않으며 기능적, 신체적, 정신사회적 측면에서 건강한 상태를 일컫는 성공적인 노화(successful brain aging)2)와 퇴행성 뇌질환의 뇌 변화를 초기에 구분할 필요성이 높아지고 있다. 성공적인 노화, 즉 건강한 노화에 따른 뇌의 변화는 기능적, 구조적, 인지적 측면에서 다양하게 보고되고 있는데, 구조적 관점에서 건강한 뇌의 노화에 대한 변화를 관찰하는 것이 실제 임상 현장이나 연구 분야에서 보다 용이하게 뇌의 노화를 관찰할 수 있으며, 지속적으로 노화 현상을 추적할수 있는 장점이 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (128)

  1. Statistics Korea. 2010 Population and housing census report: based on complete enumeration. Daejeon: Statistics Korea;2011. 

  2. Mora F. Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci 2013;15:45-52. 

  3. Nasrallah HA, Weinberger DR. The Neurology of Schizophrenia. Amsterdam: Elsevier;1986. 

  4. Walker J, Curtis V, Murray RM. Schizophrenia and bipolar disorder: similarities in pathogenic mechanisms but differences in neurodevelopment. Int Clin Psychopharmacol 2002;17 Suppl 3: S11-S19. 

  5. Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 1978;4:345-356. 

  6. Hedman AM, van Haren NE, Schnack HG, Kahn RS, Hulshoff Pol HE. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 2012;33:1987-2002. 

  7. Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H, Smith S, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 2005;64:1704-1711. 

  8. Liu RS, Lemieux L, Bell GS, Sisodiya SM, Shorvon SD, Sander JW, et al. A longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and difference image analysis. Neuroimage 2003;20:22-33. 

  9. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 2005;64:1032-1039. 

  10. Sluimer JD, van der Flier WM, Karas GB, Fox NC, Scheltens P, Barkhof F, et al. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology 2008; 248:590-598. 

  11. Ikram MA, Vrooman HA, Vernooij MW, van der Lijn F, Hofman A, van der Lugt A, et al. Brain tissue volumes in the general elderly population. The Rotterdam Scan Study. Neurobiol Aging 2008; 29:882-890. 

  12. Schmidt R, Ropele S, Enzinger C, Petrovic K, Smith S, Schmidt H, et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann Neurol 2005;58:610-616. 

  13. Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M, et al. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 2009;72:1906-1913. 

  14. Autti TH, Hamalainen J, Mannerkoski M, Van Leemput KV, Aberg LE. JNCL patients show marked brain volume alterations on longitudinal MRI in adolescence. J Neurol 2008;255:1226-1230. 

  15. Chan D, Fox NC, Jenkins R, Scahill RI, Crum WR, Rossor MN. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 2001;57:1756-1763. 

  16. DeLisi LE, Sakuma M, Maurizio AM, Relja M, Hoff AL. Cerebral ventricular change over the first 10 years after the onset of schizophrenia. Psychiatry Res 2004;130:57-70. 

  17. Fazekas F, Kapeller P, Schmidt R, Offenbacher H, Payer F, Fazekas G. The relation of cerebral magnetic resonance signal hyperintensities to Alzheimer's disease. J Neurol Sci 1996;142:121-125. 

  18. Fotenos AF, Mintun MA, Snyder AZ, Morris JC, Buckner RL. Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch Neurol 2008;65:113-120. 

  19. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 2003;23:3295-3301. 

  20. Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol 2006;5:828-834. 

  21. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 2003;60:989-994. 

  22. Tang Y, Whitman GT, Lopez I, Baloh RW. Brain volume changes on longitudinal magnetic resonance imaging in normal older people. J Neuroimaging 2001;11:393-400. 

  23. Taki Y, Kinomura S, Sato K, Goto R, Kawashima R, Fukuda H. A longitudinal study of gray matter volume decline with age and modifying factors. Neurobiol Aging 2011;32:907-915. 

  24. Terry RD, DeTeresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Ann Neurol 1987;21:530-539. 

  25. Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 1997;386:661-680. 

  26. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci 2003;6:309-315. 

  27. Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM. Longitudinal changes in cortical thickness associated with normal aging. Neuroimage 2010;52:1215-1223. 

  28. Salat DH, Lee SY, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD. Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage 2009;48:21-28. 

  29. Burggren AC, Zeineh MM, Ekstrom AD, Braskie MN, Thompson PM, Small GW, et al. Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. Neuroimage 2008;41:1177-1183. 

  30. Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, et al. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 2009;19:497-510. 

  31. Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 2006;129(Pt 11):2885-2893. 

  32. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, et al. Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 2010;51:943-951. 

  33. Taki Y, Thyreau B, Kinomura S, Sato K, Goto R, Wu K, et al. A longitudinal study of age- and gender-related annual rate of volume changes in regional gray matter in healthy adults. Hum Brain Mapp 2013;34:2292-2301. 

  34. Greenwood PM. The frontal aging hypothesis evaluated. J Int Neuropsychol Soc 2000;6:705-726. 

  35. Grieve SM, Clark CR, Williams LM, Peduto AJ, Gordon E. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 2005;25:391-401. 

  36. Kochunov P, Glahn DC, Lancaster J, Thompson PM, Kochunov V, Rogers B, et al. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage 2011;58:41-49. 

  37. Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ, Macdonald K, et al. Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease. Neuroimage 2010;51:1345-1359. 

  38. Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, et al. A meta-analysis of hippocampal atrophy rates in Alzheimer's disease. Neurobiol Aging 2009;30:1711-1723. 

  39. den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 2010;133(Pt 4):1163-1172. 

  40. Barha CK, Galea LA. Influence of different estrogens on neuroplasticity and cognition in the hippocampus. Biochim Biophys Acta 2010;1800:1056-1067. 

  41. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol 2011;122:171-185. 

  42. Vernooij MW, Smits M. Structural neuroimaging in aging and Alzheimer's disease. Neuroimaging Clin N Am 2012;22:33-55, viiviii. 

  43. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993;43:1683-1689. 

  44. Sze G, De Armond SJ, Brant-Zawadzki M, Davis RL, Norman D, Newton TH. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding. AJR Am J Roentgenol 1986;147:331-337. 

  45. Scheltens P, Barkhof F, Leys D, Wolters EC, Ravid R, Kamphorst W. Histopathologic correlates of white matter changes on MRI in Alzheimer's disease and normal aging. Neurology 1995;45:883-888. 

  46. Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F; Austrian Stroke Prevention Study. Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet 2003;361:2046-2048. 

  47. Schmidt R, Petrovic K, Ropele S, Enzinger C, Fazekas F. Progression of leukoaraiosis and cognition. Stroke 2007;38:2619-2625. 

  48. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20:519-534. 

  49. van der Flier WM, van Straaten EC, Barkhof F, Verdelho A, Madureira S, Pantoni L, et al. Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke 2005; 36:2116-2120. 

  50. Teodorczuk A, O'Brien JT, Firbank MJ, Pantoni L, Poggesi A, Erkinjuntti T, et al. White matter changes and late-life depressive symptoms: longitudinal study. Br J Psychiatry 2007;191:212-217. 

  51. Baezner H, Blahak C, Poggesi A, Pantoni L, Inzitari D, Chabriat H, et al. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 2008;70:935-942. 

  52. Poggesi A, Pracucci G, Chabriat H, Erkinjuntti T, Fazekas F, Verdelho A, et al. Urinary complaints in nondisabled elderly people with age-related white matter changes: the Leukoaraiosis And DISability (LADIS) Study. J Am Geriatr Soc 2008;56:1638-1643. 

  53. Inzitari D, Pracucci G, Poggesi A, Carlucci G, Barkhof F, Chabriat H, et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year followup of LADIS (leukoaraiosis and disability) study cohort. BMJ 2009; 339:b2477. 

  54. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208-1214. 

  55. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology 2012; 78:326-333. 

  56. Goos JD, Henneman WJ, Sluimer JD, Vrenken H, Sluimer IC, Barkhof F, et al. Incidence of cerebral microbleeds: a longitudinal study in a memory clinic population. Neurology 2010;74:1954-1960. 

  57. Zhu YC, Dufouil C, Tzourio C, Chabriat H. Silent brain infarcts: a review of MRI diagnostic criteria. Stroke 2011;42:1140-1145. 

  58. Pollock H, Hutchings M, Weller RO, Zhang ET. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 1997;191(Pt 3):337-346. 

  59. Roher AE, Kuo YM, Esh C, Knebel C, Weiss N, Kalback W, et al. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer's disease. Mol Med 2003;9:112-122. 

  60. Kwee RM, Kwee TC. Virchow-Robin spaces at MR imaging. Radiographics 2007;27:1071-1086. 

  61. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain. 1991;114(Pt 2):761-774. 

  62. Zhu YC, Dufouil C, Mazoyer B, Soumare A, Ricolfi F, Tzourio C, et al. Frequency and location of dilated Virchow-Robin spaces in elderly people: a population-based 3D MR imaging study. AJNR Am J Neuroradiol 2011;32:709-713. 

  63. Groeschel S, Chong WK, Surtees R, Hanefeld F. Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 2006;48:745-754. 

  64. Patankar TF, Baldwin R, Mitra D, Jeffries S, Sutcliffe C, Burns A, et al. Virchow-Robin space dilatation may predict resistance to antidepressant monotherapy in elderly patients with depression. J Affect Disord 2007;97:265-270. 

  65. Patankar TF, Mitra D, Varma A, Snowden J, Neary D, Jackson A. Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia. AJNR Am J Neuroradiol 2005;26:1512-1520. 

  66. Zhu YC, Dufouil C, Soumare A, Mazoyer B, Chabriat H, Tzourio C. High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. J Alzheimers Dis 2010;22: 663-672. 

  67. Maclullich AM, Wardlaw JM, Ferguson KJ, Starr JM, Seckl JR, Deary IJ. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry 2004;75:1519-1523. 

  68. Laitinen LV, Chudy D, Tengvar M, Hariz MI, Bergenheim AT. Dilated perivascular spaces in the putamen and pallidum in patients with Parkinson's disease scheduled for pallidotomy: a comparison between MRI findings and clinical symptoms and signs. Mov Disord 2000;15:1139-1144. 

  69. Zhu YC, Tzourio C, Soumare A, Mazoyer B, Dufouil C, Chabriat H. Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke 2010;41:2483-2490. 

  70. Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL, Dennis MS, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke. Forthcoming 2013. 

  71. Barboriak DP, Doraiswamy PM, Krishnan KR, Vidyarthi S, Sylvester J, Charles HC. Hippocampal sulcal cavities on MRI: relationship to age and apolipoprotein E genotype. Neurology 2000; 54:2150-2153. 

  72. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2001;265:54-84. 

  73. Gruber S, Pinker K, Riederer F, Chmelik M, Stadlbauer A, Bittsansky M, et al. Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol 2008;68:320-327. 

  74. Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, et al. In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 1996;58:1929-1935. 

  75. Brooks JC, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH. A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 2001;11:598-605. 

  76. Maudsley AA, Govind V, Arheart KL. Associations of age, gender and body mass with 1H MR-observed brain metabolites and tissue distributions. NMR Biomed 2012;25:580-593. 

  77. Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 1999;9:711-716. 

  78. Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2001;22:128-135. 

  79. Chang L, Ernst T, Poland RE, Jenden DJ. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 1996;58:2049-2056. 

  80. Angelie E, Bonmartin A, Boudraa A, Gonnaud PM, Mallet JJ, Sappey-Marinier D. Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 2001;22:119-127. 

  81. Neeb H, Zilles K, Shah NJ. Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage 2006;29:910-922. 

  82. Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007;57:308-318. 

  83. Zhang L, Thomas KM, Davidson MC, Casey BJ, Heier LA, Ulug AM. MR quantitation of volume and diffusion changes in the developing brain. AJNR Am J Neuroradiol 2005;26:45-49. 

  84. Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 1988;166(1 Pt 1):173-180. 

  85. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973;48:757-767. 

  86. Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998;44:584-590. 

  87. Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T. Diffusional anisotropy of the human brain assessed with diffusion- weighted MR: relation with normal brain development and aging. AJNR Am J Neuroradiol 1994;15:231-238. 

  88. Camara E, Bodammer N, Rodriguez-Fornells A, Tempelmann C. Age-related water diffusion changes in human brain: a voxel-based approach. Neuroimage 2007;34:1588-1599. 

  89. Chen ZG, Li TQ, Hindmarsh T. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique. A methodological study of the aging brain. Acta Radiol 2001;42:447-458. 

  90. Chun T, Filippi CG, Zimmerman RD, Ulug AM. Diffusion changes in the aging human brain. AJNR Am J Neuroradiol 2000;21: 1078-1083. 

  91. Gideon P, Thomsen C, Henriksen O. Increased self-diffusion of brain water in normal aging. J Magn Reson Imaging 1994;4:185-188. 

  92. Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T. Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol 2003;13:6-11. 

  93. Pfefferbaum A, Sullivan EV. Increased brain white matter diffusivity in normal adult aging: relationship to anisotropy and partial voluming. Magn Reson Med 2003;49:953-961. 

  94. Hsu JL, Leemans A, Bai CH, Lee CH, Tsai YF, Chiu HC, et al. Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. Neuroimage 2008;39:566-577. 

  95. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 2002; 15:456-467. 

  96. Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 2005;26:1215-1227. 

  97. Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH Jr. Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum Brain Mapp 2010;31:378-390. 

  98. Burzynska AZ, Preuschhof C, Backman L, Nyberg L, Li SC, Lindenberger U, et al. Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 2010; 49:2104-2112. 

  99. Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R. Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 2009;46:530-541. 

  100. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol 2003;45:244-255. 

  101. Sullivan EV, Zahr NM, Rohlfing T, Pfefferbaum A. Fiber tracking functionally distinct components of the internal capsule. Neuropsychologia 2010;48:4155-4163. 

  102. Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta 2012;1822:386-400. 

  103. Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, et al. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 2011;55:1454-1460. 

  104. Sullivan EV, Adalsteinsson E, Hedehus M, Ju C, Moseley M, Lim KO, et al. Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 2001;12:99-104. 

  105. O'Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS. Evidence for cortical "disconnection" as a mechanism of age-related cognitive decline. Neurology 2001;57:632-638. 

  106. Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging. 2nd ed. Sunderland, MA: Sinauer Associates;2009. 

  107. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Disruption of large-scale brain systems in advanced aging. Neuron 2007;56:924-935. 

  108. Bollinger J, Rubens MT, Masangkay E, Kalkstein J, Gazzaley A. An expectation-based memory deficit in aging. Neuropsychologia 2011;49:1466-1475. 

  109. Campbell KL, Grady CL, Ng C, Hasher L. Age differences in the frontoparietal cognitive control network: implications for distractibility. Neuropsychologia 2012;50:2212-2223. 

  110. Grady CL, Grigg O, Ng C. Age differences in default and reward networks during processing of personally relevant information. Neuropsychologia 2012;50:1682-1697. 

  111. Kalkstein J, Checksfield K, Bollinger J, Gazzaley A. Diminished top-down control underlies a visual imagery deficit in normal aging. J Neurosci 2011;31:15768-15774. 

  112. Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR, et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 2010;31:839-852. 

  113. Voss MW, Erickson KI, Prakash RS, Chaddock L, Malkowski E, Alves H, et al. Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia 2010;48:1394-1406. 

  114. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010;103:297-321. 

  115. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 1993;13:5-14. 

  116. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of longdistance interactions in the human brain. Neuroimage 2006;29:1359-1367. 

  117. Ferreira LK, Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 2013;37:384-400. 

  118. Hafkemeijer A, van der Grond J, Rombouts SA. Imaging the default mode network in aging and dementia. Biochim Biophys Acta 2012; 1822:431-441. 

  119. Mevel K, Chetelat G, Eustache F, Desgranges B. The default mode network in healthy aging and Alzheimer's disease. Int J Alzheimers Dis 2011;2011:535816. 

  120. Prvulovic D, Bokde AL, Faltraco F, Hampel H. Functional magnetic resonance imaging as a dynamic candidate biomarker for Alzheimer's disease. Prog Neurobiol 2011;95:557-569. 

  121. Terribilli D, Schaufelberger MS, Duran FL, Zanetti MV, Curiati PK, Menezes PR, et al. Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging 2011; 32:354-368. 

  122. Evers EA, Klaassen EB, Rombouts SA, Backes WH, Jolles J. The effects of sustained cognitive task performance on subsequent resting state functional connectivity in healthy young and middle- aged male schoolteachers. Brain Connect 2012;2:102-112. 

  123. Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004;5:87-96. 

  124. Tomasi D, Volkow ND. Aging and functional brain networks. Mol Psychiatry 2012;17:471, 549-558. 

  125. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 2010;30:15034-15043. 

  126. Yan L, Zhuo Y, Wang B, Wang DJ. Loss of Coherence of Low Frequency Fluctuations of BOLD FMRI in Visual Cortex of Healthy Aged Subjects. Open Neuroimag J 2011;5:105-111. 

  127. Toussaint PJ, Maiz S, Coynel D, Messe A, Perlbarg V, Habert MO, et al. Characterization of the default mode functional connectivity in normal aging and Alzheimer's disease: An approach combining entropy-based and graph theoretical measurements. Conf Proc IEEE ISBI 2011:853-856. 

  128. Meier TB, Desphande AS, Vergun S, Nair VA, Song J, Biswal BB, et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage 2012;60:601-613. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로