$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Efficiency of Gamma Irradiation to Inactivate Growth and Fumonisin Production of Fusarium moniliforme on Corn Grains 원문보기

Journal of microbiology and biotechnology, v.24 no.2, 2014년, pp.209 - 216  

Mansur, Ahmad Rois (Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University) ,  Yu, Chun-Cheol (Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University) ,  Oh, Deog-Hwan (Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University)

Abstract AI-Helper 아이콘AI-Helper

The efficiency of gamma irradiation (0, 1, 5, 10, 15, 20, and 30 kGy) as a sterilization method of corn samples (30 g) artificially contaminated with Fusarium moniliforme stored at normal condition ($25^{\circ}C$ with approximate relative humidity (RH) of 55%) and optimal condition (...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Samples were evaluated at zero time of storage and at 1, 3, 5, and 7 weeks for the fungal growth (log CFU/g) and levels of fumonisin B 1 and fumonisin B 2 (µg/g).
  • Inoculated samples (30 g) in triplicates were sealed in sterile petri dishes. Samples were irradiated at different doses of 0, 1, 5, 10, 15, 20, and 30 kGy at room temperature in a 60Co gamma irradiator (Greenpia Technology Inc., Yeoju, Gyeonggi, Republic of Korea). After each treatment, samples were kept in plastic containers.
  • So far, less studies have been reported on the presence of fungi and mycotoxin in corn grains treated by higher doses of gamma radiation after storage for longer periods. Therefore, the purpose of this study was to evaluate the efficacy of various doses of gamma irradiation up to 30 kGy on the inhibition of growth and production of fumonisins B 1 and B 2 of F. moniliforme inoculated on corn grains. Nevertheless, it was also essential to obtain a better understanding of the relationships between growth and fumonisin production as influenced by their optimal moisture and temperature during storage in order to prolong the shelf life of irradiated corn intended for human and animal consumptions.

대상 데이터

  • The corn (Zea mays L.) grain samples used for this experiment were obtained from the National Agricultural Products Quality Management Service, Republic of Korea. Corn samples (500 g) were used in triplicates and individually packaged in plastic bags, and then wrapped in paper bags and sealed.
  • The strain of Fusarium moniliforme NRRL 13569 used in all experiments was obtained from Department of Biotechnology, Korea University. The inoculum was prepared by using a sterile inoculation loop to scrape off sporulating mycelia from the surfaces of potato dextrose agar (PDA, Oxoid) with the addition of a 10% lactic acid solution (pH 2.

데이터처리

  • Samples were analyzed in triplicates and the results were presented as means ± standard deviations. All data were subjected to one-way ANOVA in SPSS v.13.0 (Statistical Package for the ocial Sciences, Chicago, IL, USA). Tukey’s multiple range tests were used to determine the significant difference at P < 0.
  • Tukey’s multiple range tests were used to determine the significant difference at P < 0.05.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. Al-Bachir M. 2007. Effect of gamma irradiation on microbial load and sensory characteristics of aniseed (Pimpinella anisum). Bioresour. Technol. 98: 1871-1876. 

  2. Atukwase A, Kaaya AN, Muyanja C. 2009. Factors associated with fumonisin contamination of maize in Uganda. J. Sci. Food Agric. 89: 2393-2398. 

  3. Aziz NH, Abd El-rehim LA, El-Far MA. 1999. Effect of gamma-irradiation on aflatoxin B1 produced by Aspergillus parasiticus in barley containing antimicrobial additives. Egypt. J. Rad. Sci. Appl. 12: 101-116. 

  4. Aziz NH, Souzan RM, Azza AS. 2006. Effect of gammairradiation on the occurrence of pathogenic microorganisms and nutritive value of four principal cereal grains. Appl. Rad. Isot. 64: 1555-1562. 

  5. Bacon CW, Tates IE, Hinton DM, Meredith F. 2001. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect. 109: 325-332. 

  6. Bolger M, Coker RD, Dinovi M, Gaylor D, Gelderblom W, Olsen M, et al. 2001. Fumonisins, pp. 103-279. In: Safety Evaluation of Certain Mycotoxins in Food. WHO Food Additives Series 47, FAO Food and Nutrition Paper 74, Prepared by the 56th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), WHO, Geneva. 

  7. Branham BE, Plattner RD. 1993. Alanine is a precursor in the biosynthesis of fumonisin B1 by Fusarium moniliforme. Mycopathologia 124: 99-104. 

  8. Chulze SN. 2010. Strategies to reduce mycotoxins levels in maize during storage: a review. Food Addit. Contam. 27: 651-657. 

  9. European Commission. 2007. Commission Regulation (EC) 1126/2007 of 28 September 2007 amending Regulation (EC) 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union L 255: 14-17. 

  10. Fan X, Niemira BA, Sokorai KJB. 2003. Use of ionizing radiation to improve sensory and microbial quality of freshcut green onion leaves. J. Food Sci. 68: 1478-1483. 

  11. Ferreira-Castro FL, Aquino S, Greiner R, Ribeiro DHB, Reis TA, Correa B. 2007. Effects of gamma radiation on maize samples contaminated with Fusarium verticillioides. Appl. Rad. Isot. 65: 927-933. 

  12. FDA (Food and Drug Administration). 2001. Guidance for industry: fumonisin levels in human foods and animal feeds. FDA Final Guidance, November 2001. 

  13. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U. 2007. Fumonisin $B_{2}$ production by Aspergillus niger. J. Agric. Food Chem. 55: 9727-9732. 

  14. Grolichova M, Dvorak P, Musilova H. 2004. Employing ionizing radiation to enhance food safety-a review. Acta Vet. Brno, 73: 143-149. 

  15. Hennigen MR, Valente-Soares LM, Sanchez S, Di-Benedetto NM, Longhi A, Eyherabide G, et al. 2000. Fumonisin in corn hybrids grown in Argentina for two consecutive seasons, pp. 331-339. In De Koe WJ, Samson RA, van Egmond HP, Gilbert J, Sabino M (eds.). Proceeding of the 10th International IUPAC Symposium on Mycotoxins and Phytotoxins, 21-25, May 2000, Guaruja, Brazil. 

  16. Hussain PR, Dar MA, Wani AM. 2013. Impact of radiation processing on quality during storage and post-refrigeration decay of plum (Prunus domestica L.) cv. Santaroza. Rad. Phys. Chem. 85: 234-242. 

  17. Labuda R, Tancinova D, Hudec K. 2003. Identification and enumeration of Fusarium species in poultry feed mixtures from Slovakia. Ann. Agric. Environ. Med. 10: 61-66. 

  18. Labuza TP, Hyman CR. 1998. Moisture migration and control in multidomain foods. Trends Food Sci. Technol. 9: 47-55. 

  19. Marin S, Sanchis V, Magan N. 1995. Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can. J. Microbiol. 41: 1063-1070. 

  20. Marin S, Sanchis V, Vinas I, Canela R, Magan N. 1995. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme in grain. Lett. Appl. Microbiol. 21: 298-301. 

  21. Marin S, Magan N, Serra J, Ramos AJ, Canela R, Sanchis V. 1999. Fumonisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat, and barley grain. J. Food Sci. 64: 921-924. 

  22. Marin S , Magan N, Belli A, Ramos AJ, Canela R, Sanchis V. 1999. Two-dimensional profiles of fumonisin B1 production by Fusarium moniliforme and F. proliferatum in relation to environmental factors and potential for modelling toxin formation in maize grain. Int. J. Food Microbiol. 51: 159-167. 

  23. Marin S, Homedes V, Sanchis V, Ramos AJ, Magan N. 1999. Impact of Fusarium moniliforme and F. proliferatum colonization of maize on calorific losses and fumonisin production under different environmental conditions. J. Stored Prod. Res. 35: 15-26. 

  24. Marin S, Albareda X, Ramos JA, Sanchis V. 2001. Impact of environment and interactions of Fusarium verticillioides and Fusarium proliferatum with Aspergillus parasiticus on fumonisin B1 and aflatoxins on maize grain. J. Sci. Food Agric. 81: 1060- 1068. 

  25. Menniti AM, Gregori R, Neri F. 2010. Activity of natural compounds on Fusarium verticillioides and fumonisin production in stored maize kernels. Int. J. Food Microbiol. 136: 304-309. 

  26. Miller JD. 2001. Factors that affect the occurrence of fumonisin. Sci. Total Environ. 109: 321-324. 

  27. Miller JD. 2008. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit. Contam. 25: 219-230. 

  28. Mokobia CE, Okpakorese EM, Analogbei C, Agbonwanegbe J. 2006. Effect of gamma irradiation on the grain yield of Nigerian Zea mays and Arachis hypogaea. J. Radiol. Prot. 26: 423-427. 

  29. Munkvold GP, Desjardins AE. 1997. Fumonisin: can we reduce their occurrence? Plant Dis. 81: 556-565. 

  30. Nelson PE, Toussoum TA, Marasas WFO. 1983. Fusarium Species; An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park, USA. 

  31. Ono EYS, Sasaki EY, Hashimoto EH, Hara LN, Corra B, Itano EN, et al. 2002. Post-harvest storage of corn: effect of beginning moisture content on mycoflora and fumonisin contamination. Food Addit. Contam. 19: 1081-1090. 

  32. Ribeiro J, Cavaglieri L, Vital H, Cristofolini A, Merkis C, Astoreca A, et al. 2011. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production. Radiat. Phys. Chem. 80: 658-663. 

  33. Rizk MA, Botros HW. 2006. Effect of gamma-irradiation on the seed mycoflora of some Egyptian food crops. J. Sci. Food Agric. Environ. 4: 91-99. 

  34. Roca E, Guillard V, Guilbert S, Gontard N. 2006. Moisture migration in a cereal composite food at high water activity: effects of initial porosity and fat content. J. Cereal Sci. 43: 144-151. 

  35. Rockland LB. 1960. Saturated salt solution for static control of relative humidity between $5^{\circ}C$ and $40^{\circ}C$ . J. Anal. Chem. 32: 1375-1376. 

  36. Samapundo S, Devliehgere F, de Meulenaer B, Debevere J. 2005. Effect of water activity and temperature on growth and the relationship between fumonisin production and the radial growth of Fusarium verticillioides and Fusarium proliferatum on corn. J. Food Prot. 68: 1054-1059. 

  37. Shelby RA, White DG, Bauske EM. 1994. Differential fumonisin production in maize hybrids. Plant Dis. 78: 582-584. 

  38. Shephard GS. 2008. Impact of mycotoxins on human health in developing countries. Food Addit. Contam. 25: 146-151. 

  39. Simas MMS, Albuquerque R, Oliveira CA, Rottinghaus GE, Correa B. 2010. Influence of gamma radiation on productivity parameters of chicken fed mycotoxin-contaminated corn. Appl. Rad. Isot. 68: 1903-1908. 

  40. Thakur RA, Smith TS. 1996. Determination of fumonisin $B_{1}$ and $B_{2}$ , and their major hydrolysis productions in corn, feed, and meat, using HPLC. J. Agric. Food Chem. 44: 1047- 1052. 

  41. Velluti A, Sanchis V, Ramos AJ, Egido J, Marin S. 2003. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 89: 145-154. 

  42. Wani AM, Hussain PR, Meena RS, Dar MA. 2008. Effect of gamma-irradiation and refrigerated storage on the improvement of quality and shelf life of pear (Pyrus communis L., cv. Bartlett/William). Rad. Phys. Chem. 77: 983-989. 

  43. Wilkes JG, Sutherland JB, Churchwell MJ, Williams AJ. 1995. Determination of fumonisins B1, B2, B3, and B4 by highperformance liquid chromatography with evaporative lightscattering detection. J. Chromatogr. A 695: 319-323. 

  44. World Health Organization (WHO). 1999. High dose irradiation: wholesomeness of food irradiated with doses above 10 kGy. Report of a joint FAO/IAEA/WHO study group on high-dose. WHO Tech. Rep. Ser. 890: 197. 

  45. Yun J, Li X, Fan X, Tang Y, Xiao Y, Wan S. 2012. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill). Rad. Phys. Chem. 81: 1198-1202. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로