$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia 원문보기

Journal of microbiology and biotechnology, v.24 no.2, 2014년, pp.280 - 286  

Valencia-Cantero, Eduardo (Chemical and Biology Research Institute, Michoacan University of San Nicolas of Hidalgo (UMSNH)) ,  Pena-Cabriales, Juan Jose (Department of Biotechnology and Biochemistry, Center of Research and Advances Studies)

Abstract AI-Helper 아이콘AI-Helper

Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Ca...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Coupons for the three treatments were incubated with cultures of the SIRC or SRC, or in sterile D2 medium, for 3 or 25 days. After the incubations, the coupons were removed and dehydrated in increasing concentrations of 20%, 40%, 60%, 80%, and 100% ethanol (in water (v/v)) for 5 min each. The coupons were stored in vacuum for metalization with copper and were examined using a scanning electronic microscope (JEOL JSM-6400) at 10 kV.
  • Coupons for the three treatments were incubated with cultures of the SIRC or SRC, or in sterile D2 medium, for 3 or 25 days. After the incubations, the coupons were removed and dehydrated in increasing concentrations of 20%, 40%, 60%, 80%, and 100% ethanol (in water (v/v)) for 5 min each.

대상 데이터

  • Carbon steel 1018 (AISI-SAE) coupons with an average area of 12.9 cm2 were used. The individual areas of the coupons were estimated according to their density, weight, and geometry.

데이터처리

  • Values shown represent the average of four replicates ± SE; letters are used to indicate that means on the same incubation day differ significantly by Duncan’s multiple range test (p < 0.05).
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. Al-Judaibi A, Al-Moubaraki A. 2013. Microbial analysis and surface characterization of SABIC carbon steel corrosion in soils of different moisture levels. Adv. Biol. Chem. 3: 264-273. 

  2. Almeida MAN, De Franca FP. 1999. Thermophilic and mesophilic bacteria in biofilms associated with corrosion in a heat exchanger. World J. Microbiol. Biotechnol. 15: 439-442. 

  3. Atlas RM, Parks LC (eds.) 1993. Handbook of Microbiological Media. CRC Press, Boca Raton Florida. 

  4. Benmoussa A, Hadjel M, Traisnel M. 2006. Corrosion behavior of API 5L X-60 pipeline steel exposed to nearneutral pH soil simulating solution. Mater. Corros. 57: 771-777. 

  5. Bryant R, Jansen W, Boivin J, Laishley E, Costerton W. 1991. Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion steel. Appl. Environ. Microbiol. 57: 2804-2809. 

  6. Cline JD. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr. 14: 454-458. 

  7. Dong ZH, Shi W, Ruan HM, Zhang GA. 2011. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corros. Sci. 53: 2978-2987. 

  8. Duan J, Wu S, Zhang X, Huang G, Du M, Hou B. 2008. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim. Acta 54: 22-28. 

  9. El-Mendili Y, Abdelouas A, Bardeau JF. 2013. Insight into the mechanism of carbon steel corrosion under aerobic and anaerobic conditions. Phys. Chem. Chem. Phys. 15: 9197-9204. 

  10. Esnault L, Jullien M, Mustin C, Bildstein O, Libert M. 2012. Metallic corrosion processes reactivation sustained by ironreducing bacteria: implication on long-term stability of protective layers. Phys. Chem. Earth 36: 1624-1629. 

  11. Halim A, Watkin E, Gubner R. 2012. Short-term corrosion monitoring of carbon steel by bio-competitive exclusion of thermophilic sulphate reducing bacteria and nitrate reducing bacteria. Electrochim. Acta 77: 348-362. 

  12. Herrera LK, Videla HA. 2009. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int. Biodeterior. Biodegrad. 63: 891-895. 

  13. Heyer A, D'Souza F, Morales CF, Ferrari G, Mol JMC, de Wit JHW. 2013. Ship ballast tanks: a review from microbial corrosion and electrochemical point of view. Ocean Eng. 70: 188-200. 

  14. Javaherdashti R. 2011. Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl. Microbiol. Biotechnol. 91: 1507-1517. 

  15. King RA, Dittmer CK, Miller JDA. 1976. Effect of ferrous ion concentration on the corrosion of iron in semicontinuous cultures of sulphate-reducing bacteria. Br. Corros. J. 11: 105-107. 

  16. King RA, Miller JD. 1971. Corrosion by the sulphatereducing bacteria. Nature 233: 491-492. 

  17. King RA, Miller JDA, Wakerley DS. 1973. Corrosion of mild steel in cultures of sulphate-reducing bacteria: effect of changing the soluble iron concentration during growth. Br. Corros. J. 8: 89-93. 

  18. King RA, Wakerley DS. 1973. Corrosion of mild steel by ferrous sulphide. Br. Corros. J. 8: 41-45. 

  19. Koch GH, Brongers PH, Thompson NG, Virmani YP, Payer JH. 2002. Corrosion Costs and Prevention Strategies in the United States. US Department of Transportation, Report No. FHWA-RD-01-156, Washington DC. 

  20. Kozlova I, Kopteva Z, Zanina V, Purish L. 2010. Microbial corrosion as a manifestation of technogenesis in biofilms formed on surfaces of underground structures. Mater. Sci. 46: 389-398. 

  21. Lee AK, Buehler MG, Newman DK. 2006. Influence of a dual-species biofilm on the corrosion of mild steel. Corros. Sci. 48: 165-178. 

  22. McNeil MB, Little BJ. 1990. Technical note: mackinawite formation during microbial corrosion. Corrosion 46: 599-600. 

  23. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446. 

  24. Obuekwe CO, Westlake DW, Cook FD, Costerton JW. 1981. Surface changes in mild steel coupons from the action of corrosion-causing bacteria. Appl. Environ. Microbiol. 41: 766-774. 

  25. Obuekwe CO, Westlake DW, Plambeck JA, Cook FD. 1981. Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil I. Polarization characteristics. Corrosion 37: 461-467. 

  26. Paisse S, Ghiglione JF, Marty F, Abbas B, Gueune H, Amaya JMS, et al. 2013. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl. Microbiol. Biotechnol. 97: 7493-7504. 

  27. Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G. 1999. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl. Microbiol. Biotechnol. 52: 639-646. 

  28. Rodin VB, Zhigletsova SK, Zhirkova NA, Aleksandrova NV, Chugunov VA, Kholodenko VP. 2011. Corrosive activity of natural microbial associations at various conditions of cultivation. Appl. Biochem. Microbiol. 47: 615-620. 

  29. Rozanova EP, Dubinina GA, Lebedeva EV, Suntsova LA, Lipovskich VM, Tsvetkov NN. 2003. Microorganisms in heat supply systems and internal corrosion of steel pipelines. Microbiology 72: 179-186. 

  30. Singer M, Brown B, Camacho A, Ne?ic S. 2011. Combined effect of carbon dioxide, hydrogen sulfide, and acetic acid on bottom-of-the-line corrosion. Corrosion 67: 015004-1-015004-16. 

  31. Sørensen J. 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43: 319-324. 

  32. Urios L, Marsal F, Pellegrini D, Magot M. 2013. Microbial diversity at iron-clay interfaces after 10 years of interaction inside a deep argillite geological formation (Tournemire, France). Geomicrobiol. J. 30: 442-453. 

  33. Valencia-Cantero E, Pena-Cabriales JJ, Martinez-Romero E. 2003. The corrosion effects of sulfate- and ferric-reducing bacterial consortia on steel. Geomicrobiol. J. 20: 157-169. 

  34. Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJ, Hassel A W, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulphate-reducing bacteria. Corros. Sci. 66: 88-96. 

  35. Videla HA, Le Borgne S, Panter C, Singh-Raman RK. 2008. MIC of steels by iron reducing bacteria. Paper No. 08505, pp. 1-10. In: Corrosion 2008. NACE International, Houston, TX. 

  36. von Wolzogen KC, van der Vlugt LS. 1934. Graphitization of cast iron as an electrochemical process in anaerobic soils. Water 18: 147-165. 

  37. Xu J, Wang K, Sun C, Wang F, Li X, Yang J, Yu C. 2011. The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating by using electrochemical impedance spectroscopy. Corros. Sci. 53: 1554- 1562. 

  38. Zhang C, Wen F, Cao Y. 2011. Progress in research of corrosion and protection by sulfate-reducing bacteria. Proc. Environ. Sci. 10: 1177-1182. 

  39. Zhang J, Zhang Y, Chang J, Quan X, Li Q. 2013. Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe (III)-reducing conditions. Water Res. 47: 2033-2040. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로