$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 곤충병원세균(Xenorhabdus ehlersii KSY)의 곤충면역 억제 능력과 이를 이용한 Bacillus thuringiensis 의 살충력 증가 효과
Immunosuppressive Activity of an Entomopathogenic Bacteria, Xenorhabdus ehlersii KSY, and Its Application to Enhance Insecticidal Activity of Bacillus thuringiensis 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.58 no.2, 2019년, pp.101 - 109  

김효일 (안동대학교 생명과학대학 식물의학과) ,  김용균 (안동대학교 생명과학대학 식물의학과)

초록
AI-Helper 아이콘AI-Helper

곤충병원선충인 Steinernema longicaudum에 공생하는 Xenorhabdus ehlersii KSY 세균은 나방류에 대한 높은 병원력을 발휘한다. 본 연구에서 이 세균의 병원력이 아이코사노이드 생합성을 억제하여 기주 곤충의 면역 저하를 유발한다는 것을 확인하였다. 그러나 이 세균의 병원력은 혈강 주입에 의해 야기된다. 섭식을 통해 이 세균을 혈강으로 전달하기 위해 곤충의 중장벽을 파괴하여 병원력을 발휘하는 Bacillus thuringiensis(Bt)와 혼합하여 처리하였다. 배추좀나방(Plutella xylostella) 유충에 대해서 X. ehlersii 세균 배양액의 혼합 처리는 Bt 살충력을 현격하게 증가시켰다. 이러한 살충효과는 또 다른 나비목 해충인 콩명나방에 대해서도 확인되었다. 제형화를 위해 X. ehlersii 세균 배양액을 동결건조하여 Bt 수화제와 혼합하였다. 이를 기반으로 간이 포장실험을 수행하였다. Bt 단독으로 처리한 결과 약 80%의 방제 효과를 보인 반면 X. ehlersii 혼합제는 95% 이상의 방제효과를 나타냈다. 본 연구는 곤충병원세균 X. ehlersii가 새로운 해충 방제제로 개발될 가능성을 제시하고 있다.

Abstract AI-Helper 아이콘AI-Helper

An entomopathogenic bacterium, Xenorhabdus ehlersii KSY, is symbiotic to a nematode, Steinernema longicaudum, and exhibits high entomopathogenic virulence against lepidopteran insects. This study showed that the bacterial pathogenicity is induced by its inhibitory activity against eicosanoid biosynt...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 국내 토착 곤충병원선충으로부터 분리된 X. ehlersii 세균의 해충방제 응용 가능성을 분석하기 위해 본 연구가 진행되었다. 이를 위해 이 세균의 병원성 및 병원성 기작을 분석하였다.
  • 다른 작용은 패혈증 유발로서 대상 곤충의 면역 능력을 무력화하고 이를 기반으로 자신의 세균이 혈강에서 증식하면서 일어나는 현상으로 이해된다(Park and Kim, 2000). 본 연구는 이 후자의 살충 기작에 비중을 두고 보다 분석을 진행하였다.
  • 본 연구에서는 최근 Kim et al. (2018b)에 의해 국내 토착 곤충병원성 선충인 Steinernema longicaudum에서 분리한 새로운 곤충병원성 세균인 Xenorhabdus ehlersii KSY을 이용하여 배추좀나방에 대한 면역억제 능력과 이를 기반으로 이 세균 배양액이 Bt의 살충력을 높일 수 있는 지를 분석하였다.

가설 설정

  • X. ehlersii 배양액의 곤충면역 능력 감소 효과로 Bt 세균의 병원력을 증가시킬 수 있다는 가설을 세웠다. 이를 증명하기 위해 낮은 Bt 농도를 이용하여 Bt 단독 또는 Bt와 X.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Xenorhabdus ehlersii KSY 세균의 병원력은 어떤 문제를 야기하는가? 곤충병원선충인 Steinernema longicaudum에 공생하는 Xenorhabdus ehlersii KSY 세균은 나방류에 대한 높은 병원력을 발휘한다. 본 연구에서 이 세균의 병원력이 아이코사노이드 생합성을 억제하여 기주 곤충의 면역 저하를 유발한다는 것을 확인하였다. 그러나 이 세균의 병원력은 혈강 주입에 의해 야기된다.
아이코사노이드란 무엇인가? 아이코사노이드는 탄소수 20개의 불포화지방산인 아라키 도닉산(arachidonic acid, AA)이 산화되어 형성된 물질류의 총칭이다(Corey, 1980). 즉, 인지질을 기질로 sn-2 위치에 붙은 지방산을 가수분해하는 효소인 phospholipase A 2 (PLA 2 )의 작용 으로 AA가 유리되면 cyclooxygenase의 작용으로 프로스타글 란딘(prostaglandin)류의 아이코사노이드가 만들어지거나 또는 lipoxygenase의 산화작용으로 류코트리엔(leukotriene)류의 아이코사노이드를 형성하게 된다(Stanley, 2000).
Steinernema에 속한 선충의 특징은? bacterio.net/xenorhabdus) 이들이 공생하는 Steinernema 속한 선충은 100종 이상이 알려져 있어 하나의 세균 종은 한 종 이상의 선충을 숙주로 가질 수 있다(Yooyangket et al., 2018).
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. Ahmed, S., Kim, Y., 2019. An aquaporin mediates cell shape change required for cellular immunity in the beet armyworm, Spodoptera exigua. Sci. Rep. In Press. 

  2. Ahmed, S., Stanley, D., Kim, Y., 2018. An insect prostaglandin $E_2$ synthase acts in immunity and reproduction. Front. Physiol. 9, 1231. 

  3. Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309. 

  4. Baines, D., Downer, R.G., 1994. Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol trisphosphate. Arch. Insect Biochem. Physiol. 26, 249-261. 

  5. Berry, C., Crickmore, N., 2017. Structural classification of insecticidal proteins - towards an in silico characterisation of novel toxins. J. Invertebr. Pathol. 142, 16-22. 

  6. Bode, H.B., 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13, 224-230. 

  7. Boemare, N.E., Akhurst, R.J., Mourant, R.G., 1993. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43, 249-255. 

  8. Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. 

  9. Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. 

  10. Campos-Herrera, R., Barbercheck, M., Hoy, C.W., Stock, S.S., 2012. Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. J. Nematol. 42, 162-176. 

  11. Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447 

  12. Corey, E.J., Albright, J.O., Barton, A.E., Hashimoto, S., 1980. Chemical and enzymic syntheses of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylaxis (SRS) and 5-HETE. J. Am. Chem. Soc. 102, 1435-1436. 

  13. Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Dean, D.H., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813. 

  14. Dowds, B.C.A., Peters, A., 2002. Entomopathogenic nematology, In: Gaugler, R. (Ed.), Virulence Mechanisms. CABI, New York, pp. 79-98. 

  15. Eom, S., Park, Y., Kim, H., Kim, Y., 2014b. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. 

  16. Eom, S., Park, Y., Kim, Y., 2014a. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium Xenorhabdus nematophila. J. Microbiol. 52, 161-168. 

  17. ffrench-Constant, R., Waterfield, N., Daborn, P., Joyce, S., Bennett, H., Au, C., Dowling, A., Boundy, S., Reynolds, S., Clarke, D., 2003. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol. Rev. 26, 433-456. 

  18. Forst, S., Clarke, D., 2002. Bacteria-nematode symbiosis, In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CABI, New Brunswick, New Jersey, pp. 57-78. 

  19. Furlong, M.J., Wright, D.J., Dosdall, L.M., 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58, 517-541. 

  20. Gatsogiannis, C., Lang, A.E., Meusch, D., Pfaumann, V., Hofnagel, O., Benz, R., Aktories, K., Raunser, S., 2013. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495, 520-523. 

  21. Gaugler, R., 2002. Entomopathogenic Nematology. CABI Publishing, Wallingford, UK. 

  22. Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643. 

  23. Godjo, A., Afouda, L., Baimey, H., Decraemer, W., Willems, A., 2018. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Arch. Microbiol. 200, 589-601. 

  24. Grizanova, E.V., Dubovskiy, I.M., Whitten, M.M., Glupov, V.V., 2014. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119, 40-46. 

  25. Ishii, K., Adachi, T., Hamamoto, H., Oonishi, T., Kamimura, M., Imamura, K., Sekimizu, K., 2013. Insect cytokine paralytic peptide activates innate immunity via nitric oxide production in the silkworm Bombyx mori. Dev. Comp. Immunol. 39, 147-153. 

  26. Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248. 

  27. Jung, J.K., Seo, B.-Y., Park, J.H., Moon, J.-K., Choi, B.-S., Lee, Y.-H., 2007. Developmental characteristics of soybean podworm, Matsumuraeses phaseoli (Lepidoptera: Tortricidae) and legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on semi-synthetic artificial diets. Korean J. Appl. Entomol. 46, 393-399. 

  28. Kim, H., Keum, S., Hasan, A., Kim, H., Jung, Y., Lee, D., Kim, Y., 2018b. Identification of an entomopathogenic bacterium, Xenorhabdus ehlersii KSY, from Steinernema longicaudum GNUS101 and its immunosuppressive activity against insect host by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 159, 6-17. 

  29. Kim, Y., Ahmed, S., Stanley, D., An, C., 2018a. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. 

  30. Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. 

  31. Kim, Y., Kim, K., Kim, H., Park, Y., Kim, G.H., 2013. An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella. Korean J. Appl. Entomol. 52, 35-43. 

  32. Kim, Y., Sadekuzzaman, M., Kim, M., Kim, K., Park, Y., Jung, J.K., 2016. Genetic character and insecticide susceptibility on a Korean population of a subtropical species, Maruca vitrata. Korean J. Appl. Entomol. 55, 257-266. 

  33. Lavine, M.D., Strand, M.D., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. 

  34. Nalini, M., Kim, Y., 2007. A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53, 1283-1292. 

  35. Park, J., Stanley, D., Kim, Y., 2013. Rac1 mediates cytokinestimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 59, 682-689. 

  36. Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. 

  37. Sadekuzzaman, M., Stanley, D., Kim, Y., 2018. Nitric oxide mediates insect cellular immunity via phospholipase $A_2$ activation. J. Innate Immun. 10, 70-81. 

  38. Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. 

  39. Shi, Y.M., Bode, H.B., 2018. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat. Prod. Rep. 35, 309-335. 

  40. Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. 

  41. Stanley, D.W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton, New Jersey, NY. 

  42. Stanley, D.W., Kim, Y., 2014. Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. 

  43. Stock, S.P., Goodrich-Blair, H., 2008. Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis 46, 65-76. 

  44. Sung, E.J., Ryuda, M., Matsumoto, H., Uryu, O., Ochiai, M., Cook, M.E., Yi, N.Y., Wang, H., Putney, J.W., Bird, G.S., Shears, S.B., Hayakawa, Y., 2017. Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress. Proc. Natl. Acad. Sci. USA 114, 13786-13791. 

  45. Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785. 

  46. Talekar, N.S., Shelton, A.M., 1993. Biology, ecology and management of the diamondback moth. Annu. Rev. Entomol. 38, 275-301. 

  47. Waterfield, N.R., Ciche, T., Clarke, D., 2009. Photorhabdus and a host of hosts. Annu. Rev. Microbiol. 63, 557-574. 

  48. Wu, G., Yi, Y., 2018. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol. Immunol. 103, 220-228. 

  49. Xu, J., Morisseau, C., Yang, J., Lee, K.S., Kamita, S.G., Hammock, B.D., 2016. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding. Insect Biochem. Mol. Biol. 76, 62-69. 

  50. Yooyangket, T., Muangpat, P., Polseela, R., Tandhavanant, S., Thanwisai, A., Vitta, A., 2018. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS One. 13, e0195681. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로