• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

DMA를 이용한 나노 입자의 크기 분류법에 대한 이해와 성능개선

Understanding Size Selection of Nanoparticles Using a Differential Mobility Analyzer (DMA) and Its Performance Enhancement


A differential mobility analyzer (DMA) has been widely used as a standard tool for classifying nanoparticles with a certain size. More recently, several new types of DMA have been tested in an attempt to produce size-monodisperse nanoparticles. It is a bit surprise to see how simple the working theory of the DMA is. Although the theory was demonstrated quite successful, no one can guarantee whether the theory still works in another geometry of the DMA. In this regard, we first investigated the validity of the theory under various working conditions and then moved to check the validity upon minor change in its design. For the valid test, we compared the results with those obtained from a computational fluid dynamics.

저자의 다른 논문

참고문헌 (27)

  1. Brunelli N. A., Neidholdt E. L., Giapis K. P., Flagan R. C., and Beauchamp J. L. (2013). Continuous Flow Ion Mobility Separation with Mass Spectrometric Detection Using a Nano‐Radial Differential Mobility Analyzer at Low Flow Rates, Anal. Chem, Vol. 85(9), pp. 4335‐4341. 
  2. Allmaier G., Laschober C. and Szymanski W. W.(2008). Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles‐protein complexes, lipoparticles, and viruses, Journal of the American Society for Mass Spectrometry, Vol. 19, pp. 1062‐1068. 
  3. Bacher G., Szymanski W. W., Kaufman S. L., Zollner P., Blaas D. and Allmaier G.(2001). Charge‐reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses, J. Mass Spectrom., Vol. 36, pp. 1038‐1052. 
  4. Chen D. R. and Pui D. Y. H. (1997). Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements, J. Aerosol Sci., Vol. 28(6), pp. 985‐1004. 
  5. Chen D. R., Pui D. Y. H., Hummes D., Fissan H., Quant F. R. and Sem G. J. (1998). Design and evaluation of a nanometer aerosol differential mobility analyzer(Nano‐DMA), J. Aerosol Sci., Vol. 29, pp. 497‐509. 
  6. Flagan R. C. (2008). Differential Mobility Analysis of Aerosols: A Tutorial, KONA Powder and Particle Journal, Vol. 26, pp. 443‐451 
  7. Grassian V. H., O'Shaughnessy P. T., Adamcakova‐ Dodd A., Pettibone J. M. and Thorne P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm, Environmental Health Perspectives, Vol. 115, pp. 397‐402. 
  8. Hagwood C., Sivathanu Y. and Mulholland G. (1999) The DMA Transfer Function with Brownian Motion a Trajectory/Monte‐Carlo Approach, Aerosol Sci. Technol., Vol. 30, pp. 40‐61. 
  9. Hewitt G. S. (1957). The Charging of Small Particles for Electrostatic Precipitation, AIEE Trans, Vol. 76, pp. 300‐306. 
  10. Ji. J., Jung. J., Kim. S., Yoon. J., Park. J., Choi. B., Chung. Y., Kwon. I., Jeong. J., Han. B., Shin. J., Sung. J., Song. K and Yu. I. (2007). Twenty ‐eight‐day inhalation toxicity study or silver nanoparticles in Sprague the dawley rats, Inhalation Toxicology, Vol. 19, pp. 857‐871. 
  11. Knutson E. O. and Whitby K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications, J. Aerosol Sci, Vol. 6, pp. 443‐451. 
  12. Knutson E. O. and Whitby K. T. (1975). Accurate Measurement of Aerosol Electric Mobility Moments, J. Aerosol Sci, Vol. 6, pp. 453‐460. 
  13. Liu B. Y. H. and Pui D. Y. H. (1973). A Submicron Aerosol Standard and the Primary, Absolute Calibration of the Condensation Nuclei Counter, J. Colloid and Interface Science, Vol. 47(1), pp. 155‐171. 
  14. Lall A. A., Ma X., Guha S., Mulholland G. W., Zachariah M. R. (2009). Online Nanoparticle Mass Measurement by Combined Aerosol Particle Mass Analyzer and Differential Mobility Analyzer: Comparison of Theory and Measurements, Aerosol Sci. Technol., Vol. 43, pp. 1075‐1083. 
  15. Mamakos A., Ntziachristos L., Samaras Z. (2007). Diffusion broadening of DMA transfer functions. Numerical validation of Stolzenburg model, J. Aerosol Sci., Vol. 38, pp. 747‐763. 
  16. Mamakos A., Ntziachristos L., Samaras Z. (2008) Differential Mobility Analyser Transfer Functions in Scanning Mode, J. Aerosol Sci., Vol. 39, pp. 227‐246. 
  17. Martinez‐Lozano P., Labowsky M. (2009). An experimental and numerical study of a miniature high resolution isopotential DMA, J. Aerosol Sci., Vol. 40, pp. 451‐462. 
  18. Mei F., Fu H., Chen D. R. (2011). A cost‐effective differential mobility analyzer(cDMA) for multiple DMA column applications, J. Aerosol Sci., Vol. 42, pp. 462‐473. 
  19. Pease L. F., Elliott J. T., Tsai D. H., Zachariah M. R. and Tarlov M. J. (2008). Determination of protein aggregation with differential mobility analysis: Application to IgG antibody, Biotechnology and Bioengineering, Vol. 101, pp. 1214‐1222. 
  20. Ramechecandane S., Beghein C., Allard F., Bombardier P. (2011) Modelling ultrafine/nano particle dispersion in two differential mobility analyzers( M‐DMA and L‐DMA), Building and Environment, Vol. 46, pp. 2255‐2266. 
  21. Rouenhoff M., Hontanon E., Azabal A., Ramiro E. and Kuis F. E. (2012). Scaling‐up the production of monodisperse nanoparticles by means of a high ‐flow rate parallel plate DMA, EAC Conference. 
  22. Rus J., Moro D., Sillero J. A., Royuela J., Casado A., Estevez‐Molinero F., de la Mora J. F. (2010). IMS‐MS studies based on coupling a differential mobility analyzer (DMA) to commercial API‐MS systems, J. Mass Spectrom., Vol. 298, pp. 30‐40. 
  23. Salthammer T., Uhde E. (2009). Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation (2nd ed.), WILEY‐VCH: Weinheim 
  24. Song. D. K., Chang H., Kim. S. S. and K. Okuyama (2005). Numerical Evaluation of the Transfer Function of a Low Pressure DMA by Using the Langevin Dynamic Equation, Aerosol Sci. Technol, Vol. 39, pp. 701‐712. 
  25. Song. D. K., Lee. H. M, Chang H., Kim. S. S., M. Shimada, K. Okuyama (2006). Performance evaluation of long differential mobility analyzer( LDMA) in measurements of nanoparticles, J. Aerosol Sci., Vol. 37, pp. 598‐615. 
  26. Stolzenburg M. R. (1988) An ultrafine aerosol size distribution measuring system, Ph.D. thesis, University of Minnesota, Minneapolis. 
  27. White F. (2001). Fluid mechanics., New York: McGraw‐ Hill. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일