$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

신경계 질환에서 철 관련 자기공명영상 기법의 활용
Application of Iron Related Magnetic Resonance Imaging in the Neurological Disorders 원문보기

대한임상신경생리학회지 = Korean journal of clinical neurophysiology, v.16 no.1, 2014년, pp.1 - 7  

김태형 (양산부산대학교병원 신경과, 의생명연구소) ,  이재혁 (양산부산대학교병원 신경과, 의생명연구소)

Abstract AI-Helper 아이콘AI-Helper

Iron is an important element for brain oxygen transport, myelination, DNA synthesis and neurotransmission. However, excessive iron can generate reactive oxygen species and contribute neurotoxicity. Although brain iron deposition is the natural process with normal aging, excessive iron accumulation i...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본문에서는 과도한 철에 의한 신경독성 기전, 뇌 내 철을 영상화하는 자기공명영상 기법, 그리고 앞서 언급한 다양한 신경퇴행성 질환들의 철과 관련된 병태생리와 영상학적 소견에 대해 언급하고자 한다.
  • 기존의 연구들은 자기공명영상을 이용하여 각 질환에 특징적인 뇌 내 철 침착의 양상을 보고하였다(Table 1). 여기에서는 철과 관련된 이들 질환의 병태생리적 특징과 자기공명영상 소견을 간략히 기술하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
뇌 내에서 철은 어떻게 구분됩니까? 철은 DNA 합성, 유전자 발현, 수초화, 신경물질전달(neurotransmission), 미토콘드리아의 전자 수송 등에 관여한다. 1뇌 내에서 철은 헤모글로빈에 있는 헴철(heme iron)과 페리틴(ferritin), 트랜스페린(transferin), 헤모시데린(hemosiderin)등의 비헴철(non-heme iron)로 구분된다. 트랜스페린은 혈액 내 철을 뇌 조직으로 수송하고, 페리틴은 철을 저장하여 안정된 상태로 유지한다.
철은 무엇에 관여합니까? 철은 DNA 합성, 유전자 발현, 수초화, 신경물질전달(neurotransmission), 미토콘드리아의 전자 수송 등에 관여한다. 1뇌 내에서 철은 헤모글로빈에 있는 헴철(heme iron)과 페리틴(ferritin), 트랜스페린(transferin), 헤모시데린(hemosiderin)등의 비헴철(non-heme iron)로 구분된다.
생체 내 철 침착의 정도가 심해지면 어떠한 문제점이 발생합니까? 과도하게 축적된 철은 활성산소(reactive oxygen species, ROS)를 생성하여 산화스트레스(oxidative stress)를 유발하고, 신경퇴행성 질환들의 주요 발병 원인으로 여겨지며1,2,5, 이와 연관된 질환들로는 neurodegeneration with brain iron accumulation (NBIA) 질환들, 파킨슨병(Parkinson’s disease) 과 비전형 파킨슨증후군(atypical parkinsonism), 알츠하이머병(Alzheimer’s disease), 다발성 경화증(multiple sclerosis) 등이 있다. 1,3,5,6
질의응답 정보가 도움이 되었나요?

참고문헌 (54)

  1. Crichton RR, Dexter DT, Ward RJ. Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm 2011;118:301-314. 

  2. Benarroch EE. Brain iron homeostasis and neurodegenerative disease. Neurology 2009;72:1436-1440. 

  3. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 2004;101:9843-9848. 

  4. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004;5:863-873. 

  5. Gutteridge JM. Iron and oxygen radicals in brain. Ann Neurol 1992;32 Suppl:S16-21. 

  6. Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 2007;4:371-386. 

  7. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur J Radiol 2013;82:708-718. 

  8. Sian-Hulsmann J, Mandel S, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem 2011;118:939-957. 

  9. Schenck JF. Magnetic resonance imaging of brain iron. J Neurol Sci 2003;207:99-102. 

  10. Westbrook C, Roth CK, Talbot J. MRI in practice. 4th ed. Chichester: Wiley-Blackwell, 2011;21-34. 

  11. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999;210:759-767. 

  12. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-72. 

  13. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462. 

  14. Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1-25. 

  15. Bartzokis G, Aravagiri M, Oldendorf WH, Mintz J, Marder SR. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 1993;29:459-64. 

  16. Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 1997;15:29-35. 

  17. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility- weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19-30. 

  18. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibilityweighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009;30:232-252. 

  19. Yan SQ, Sun JZ, Yan YQ, Wang H, Lou M. Evaluation of brain iron content based on magnetic resonance imaging (MRI): comparison among phase value, R2* and magnitude signal intensity. PLoS One 2012;7:e31748. 

  20. Walsh AJ, Wilman AH. Susceptibility phase imaging with comparison to R2 mapping of iron-rich deep grey matter. Neuroimage 2011;57:452-461. 

  21. Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009;46:73-80. 

  22. Schipper HM. Neurodegeneration with brain iron accumulation- clinical syndromes and neuroimaging. Biochim Biophys Acta 2012;1822:350-360. 

  23. McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008;70:1614-1619. 

  24. Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis 2012;46:1-18. 

  25. Kumar N, Boes CJ, Babovic-Vuksanovic D, Boeve BF. The "eye-of-the-tiger" sign is not pathognomonic of the PANK2 mutation. Arch Neurol 2006;63:292-293. 

  26. Lee JH, Kim DS, Baik SK, Nam SO. Nigropallidal iron accumulation in pantothenate kinase-associated neurodegeneration demonstrated by susceptibility-weighted imaging. J Neurol 2010;257:661-662. 

  27. Baraibar MA, Barbeito AG, Muhoberac BB, Vidal R. Ironmediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration. J Biol Chem 2008;283:31679-31689. 

  28. Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov Disord 2006;21:1299-1310. 

  29. Morawski M, Meinecke Ch, Reinert T, Dorffel AC, Riederer P, Arendt T, et al. Determination of trace elements in the human substantia nigra. Nucl Instrum Methods Phys Res B 2005;231:224-228. 

  30. Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas LJ, Tishler TA, et al. MRI evaluation of brain iron in earlier-and later-onset Parkinson's disease and normal subjects. Magn Reson Imaging 1999;17:213-222. 

  31. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease. Neurology 1995;45:1138-1143. 

  32. Graham JM, Paley MN, Grunewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson's disease imaged using the PRIME magnetic resonance sequence. Brain 2000;123 (Pt 12):2423-2431. 

  33. Zhang J, Zhang Y, Wang J, Cai P, Luo C, et al. Characterizing iron deposition in Parkinson's disease using susceptibilityweighted imaging: an in vivo MR study. Brain Res 2010;1330:124-130. 

  34. Jin L, Wang J, Zhao L, Jin H, Fei G, Zhang Y, et al. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson's disease. Brain 2011;134(Pt 1):50-58. 

  35. Han YH, Lee JH, Kang BM, Mun CW, Baik SK, et al. Topographical differences of brain iron deposition between progressive supranuclear palsy and parkinsonian variant multiple system atrophy. J Neurol Sci 2013;325;29-35. 

  36. Lee JH, Han YH, Kang BM, Mun CW, Lee SJ, et al. Quantitative assessment of subcortical atrophy and iron content in progressive supranuclear palsy and parkinsonian variant of multiple system atrophy. J Neurol 2013;260:2094-2101. 

  37. Du G, Lewis MM, Sen S, Wang J, Shaffer ML, Styner M, et al. Imaging nigral pathology and clinical progression in Parkinson's disease. Mov Disord 2012;27:1636-1643. 

  38. Lee JH, Han YH, Cho JW, Lee JS, Lee SJ, et al. Evaluation of brain iron content in idiopathic REM sleep behavior disorder using quantitative magnetic resonance imaging. Parkinsonism Relat Disord. 

  39. Honda K, Casadesus G, Petersen RB, Perry G, Smith MA. Oxidative stress and redox-active iron in Alzheimer's disease. Ann N Y Acad Sci 2004;1012:179-182. 

  40. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 2001;30:447-450. 

  41. Mantyh PW1, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 1993;61:1171-1174. 

  42. Bartzokis G, Sultzer D, Cummings J, Holt LE, Hance DB, Henderson VW, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 2000;57:47-53. 

  43. Zhu WZ, Zhong WD, Wang W, Zhan CJ, Wang CY, Qi JP, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 2009;253:497-504. 

  44. Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 2013;37:127-136. 

  45. House MJ, St Pierre TG, Foster JK, Martins RN, Clarnette R. Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR Am J Neuroradiol 2006;27:430-439. 

  46. House MJ, St Pierre TG, Kowdley KV, Montine T, Connor J, Beard J, et al. Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from alzheimer's disease patients. Magn Reson Med 2007;57:172-180. 

  47. LeVine SM. Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res 1997;760:298-303. 

  48. Ropele S, de Graaf W, Khalil M, Wattjes MP, Langkammer C, Rocca MA, et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging 2011;34:13-21. 

  49. Bermel RA, Puli SR, Rudick RA, Weinstock-Guttman B, Fisher E, Munschauer FE 3rd, et al. Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity. Arch Neurol 2005;62:1371-1376. 

  50. Ropele S, Kilsdonk ID, Wattjes MP, Langkammer C, de Graaf WL, Frederiksen JL, et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult Scler 2014 Apr 30. [Epub ahead of print]. 

  51. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich's ataxia. Ann Neurol 1999;46:123-125. 

  52. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 2007;110:401-408. 

  53. Ignjatovic A, Stevic Z, Lavrnic S, Dakovic M, Bacic G. Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 2013;38:1472-1479. 

  54. Vinod Desai S, Bindu PS, Ravishankar S, Jayakumar PN, Pal PK. Relaxation and susceptibility MRI characteristics in Hallervorden- Spatz syndrome. J Magn Reson Imaging 2007;25:715-720. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로