$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수전해 반응에 의한 고분자전해질 연료전지 전극과 막의 열화
Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis 원문보기

Korean chemical engineering research = 화학공학, v.52 no.6, 2014년, pp.695 - 700  

정재현 (순천대학교 화학공학과) ,  신은경 (순천대학교 화학공학과) ,  정재진 (순천대학교 화학공학과) ,  나일채 ((주)CNL Energy) ,  추천호 ((주)ETIS) ,  박권필 (순천대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

고분자전해질 연료전지로 물을 전기분해하여 수소와 산소를 발생시킬 수 있다. 그러나 1.7V 이상의 높은 전압에서 수전해 반응이 일어나므로 전극과 고분자 전해질 막의 열화가 빠르게 진행된다. 수전해 과정에서 anode의 열화를 방지하기 위해 촉매로 지지체 없는 $IrO_2$를 보통 사용하는데 본 연구에서는 고분자전해질 연료전지용 Pt/C 촉매를 수전해 반응에 그대로 사용했을 때 전극과 막의 열화 현상을 분석하였다. 1.8~2.0 V 전압 범위에서 수전해 반응 후 고분자 전해질 연료전지 구동 조건에서 I-V, CV, 임피던스, LSV를 측정했다. 수전해 전압이 높을수록 전극과 막의 열화 속도가 증가하였다. 2.0 V에서 1분 동안 수전해 반응했을 때 수소 수율은 88%였고, 전극과 고분자 막이 열화되어 0.6 V에서 성능이 49% 감소하였다.

Abstract AI-Helper 아이콘AI-Helper

Proton Exchange Membrane Fuel Cells (PEMFC) can generate hydrogen and oxygen from water by electrolysis. But the electrode and polymer electrolyte membrane degrade rapidly during PEM water electrolysis because of high operation voltage over 1.7V. In order to reduce the rate of anode electrode degrad...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • PEMFC의 MEA로 수전해 반응에 의해 수소발생과 MEA 열화에 대해 실험한 결과를 다음과 같이 정리하였다.
  • 본연구에서는 PEMFC MEA를 그대로 사용해 물 전기분해를 했을때 전극과 불소계 고분자 전해질막이 어떻게 열화하는지 확인하여 PEMFC 내구성 및 신뢰성 향상과 일체형재생전지와 PEM 수전해 연구의 기초자료로 사용하고자 한다.

가설 설정

  • 4 mg/cm백금이 함유된 PEMFC용 전극의 MEA(3M Co)를 사용하였다. Potentiostat(Solatron, SI 1287)로 일정전압을 유지하면서 발생하는 수소는 메스 실린더를 이용한 수상치환 방법으로 포집하였고, 물의 온도에서 포화되었다고 가정해 수증기압을 제외한 양으로 수소발생량을 산출하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
고분자전해질 연료전지로 발생시킬 수 있는 것은? 고분자전해질 연료전지로 물을 전기분해하여 수소와 산소를 발생시킬 수 있다. 그러나 1.
고분자전해질 연료전지의 역할은? 고분자전해질 연료전지(PEMFC)는 수소와 산소를 반응시켜 물을 생성하면서 전기를 발생시키는 에너지 변환장치다. PEMFC 전극 촉매로 백금을 사용하는데 물을 전기분해할 때도 백금 전극이 이용되므로 연료전지 장치로 물을 전기분해하여 수소를 발생시킬 수 있다[1].
PEMFC의 기능 양방향 성질을 이용해 연구개발되고 있는예는? PEMFC는 물 전기 분해에 필요한 촉매와 이온 전도성 막이 모두 있으므로 전지 기능과 전기분해 기능 양방향으로 사용할 수 있다. 이와 같은 성질을 이용해 연구 개발되고 있는 것의 한 예로 인공위성 등에 이용될 일체형재생전지(Unitized Regenerative Battery)가 있다[11]. 인공위성은 주간에는 태양전지로부터 전력을 공급받고 야간에는 위성의 지속적인 임무수행을 위해 내부전기에너지를 필요로 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (17)

  1. Marcelo, C., David, L. F., Jurgen M. and Detlef, S., "A Comprehensive Review on PEM Water Electrolysis," Int. J. Hydrog. Energy, 38, 4901-4934(2013). 

  2. Barbir, F., "PEM Electrolysis for Production of Hydrogen from Renewable Energy Sources," Sol. Energy, 78, 661-669(2005). 

  3. Ito, H., Maeda, T., Nakano, A. and Takenaka, H., "Properties of Nafion Membranes Under PEM Water Electro Lysis Conditions," Int. J. Hydrog. Energy, 36, 10527-10540(2011). 

  4. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O. and Guillet, N., "Synthesis and Characterization of Electrocatalysts for the Oxygen Evolution in PEM Water Electrolysis," Int. J. Hydrog. Energy, 36, 10474-10481(2011). 

  5. Wang, J. T., Wang, W. W., Cheng, Wang, Z. and Mao, Q., "Corrosion Behavior of Three Bipolar Plate Materials in Simulated SPE Water Electrolysis Environment," Int. J. Hydrog. Energy, 37, 12069-12073(2012). 

  6. Asier, G. U., Dimitrios, P. and Keith, S., "Solid Acids as Electrolyte Materials for Proton Exchange Embrane (PEM) Electrolysis: Review," Int. J. Hydrog. Energy, 37, 3358-3372(2012). 

  7. Huaneng, S., Bernard, J. B., Vladimir, L., Sivakumar, P., and Shan, J., "Study of Catalyst Sprayed Membrane Under Irradiation Method to Prepare High Performance Membrane Electrode Assemblies for Solid Polymer Electrolyte Water Electrolysis," Int. J. Hydrog. Energy, 36, 15081-15088(2011). 

  8. Xu, J., Miao, R., Zhao, T., Wu, J. and Wang, X., "A Novel Catalyst Layer with Hydrophilic-hydrophobic Meshwork and Pore Structure for Solid Polymer Electrolyte Water Electrolysis," Electrochem. Commun., 13, 437-439(2011). 

  9. Zhang, Y., Wang, C., Wan, N., Liu, Z. and Mao, Z., "Study on a Novel Manufacturing Process of Membrane Electrode Assemblies for Solid Polymer Electrolyte Water Electrolysis," Electrochem. Commun., 9, 667-670(2011). 

  10. Siracusano, S., Baglio, V., D'Urso, C., Antonucci, V. and Arico, A. S., "Preparation and Characterization of Titanium Suboxides as Conductive Supports of $IrO_2$ Electrocatalysts for Application in SPE Electrolysers," Electrochim. Acta, 54, 6292-6299(2009). 

  11. Salwan, S., Dihrab, K., Sopian, M. A., Alghoul, M. and Sulaiman, Y., "Review of the Membrane and Bipolar Plates Materials for Conventional and Unitized Regenerative Fuel Cells," Renew. Sust. Energ. Rev., 13, 1663-1668(2009). 

  12. Zhuo, X., Sui, S. and Zhang, J., "Electrode Structure Optimization Combined with Water Feeding Modes for Bi-Functional Unitized Regenerative Fuel Cells," Int. J. Hydrog. Energy, 38, 4792-4797(2013). 

  13. Grigoriev, S. A., Millet, P., Dzhus, K. A., Middleton, H., Saetre, T.O. and Fateev, V. N., "Design and Characterization of Bi-functional Electrocatalytic Layers for Application in PEM Unitized Regenerative Fuel Cells," Int. J. Hydrog. Energy, 35, 5070-5076(2010). 

  14. Grigoriev, S. A., Millet, P., Porembsky, V. I. and Fateev, V. N. "Development and Preliminary Testing of a Unitized Regenerative Fuel Cell Based on PEM Technology," Int. J. Hydrog. Energy, 36, 4164-4168(2011). 

  15. Garcia, G., Roca-Ayats, M., Lillo, A., Galante, J. L., M. A., Pe, M. V. and Huerta, M., "Catalyst Support Effects at the Oxygen Electrode of Unitized Regenerative Fuel Cells," Catal. Today, 210, 67-74(2013). 

  16. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). 

  17. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로