$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

나노물질이 포함된 다양한 제품들이 증가하고 있으며, 나노물질의 수생태계 노출에 대해서는 불가피하다. 따라서 우리는 금나노입자를 이용하여 국내 다양한 습지 환경에 널리 서식하는 북방산개구리에 대한 독성평가(부화율, 바디컨디션, 행동학적민감도)를 해보았다. 행동학적 민감도포식자 회피반응 정도를 이용하여 Ethvision XT 9으로 측정하였다. 금나노입자에 대한 부화율과 STL의 독성은 나타나지 않았다. 하지만 금나노입자에 노출된 올챙이들은 외부자극에 대한 행동학적 민감도가 감소하였다. 이러한 결과는 실험대상 동물의 행동학적 특성을 이용한 새로운 독성평가 방식을 제시한다.

Abstract AI-Helper 아이콘AI-Helper

As the number of applications containing nanomaterials increase, aquatic ecosystem exposure to nanoparticles (NPs) is unavoidable. In this study, we carried out toxicity assessment to Au-nanoparticles(NPs) of Rana dybowskii eggs and tadpoles. Toxicity was recorded hatching rate, body condition(Snout...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 하지만 이러한 연구들은 모두 치사영향에 관한 연구들로 실제 수중생태계 생물들에게 적용하는 것은 무리가 있다. 우리는 금나노입자 노출에 따른 행동학적 근거를 토대로 국내에 광범위한 수중생태계에 서식하고 있는 북방산개구리 알의 부화율과 유생의 행동변화에 따른 생존가능성에 대해 알아보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
금나노입자가 배아에 대한 독성이 거의 없다는 것을 알 수 있는 연구결과는 어떤 것들이 있는가? 우리는 금나노입자의 생물영향평가를 위해 농도별 금나노입자에 노출된 북방산 개구리 배아의 부화율과 부화 12시간 후 STL평균을 비교, 분석한 결과 통계적 유의성을 발견하지 못했다. 즉, 실험에서 사용된 농도의 금나노입자는 북방산개구리 배아의 부화율과 부화 12시간 후 유생의 STL에 영향을 주지 않는다고 할 수 있다. Asharani et al., (2011)은 금나노 입자의 크기에 따른 독성 차이를 알아보기 위하여 0, 10, 25, 50, 75, 100㎍/mL 농도의 금나노입자에 D. rerio 수정란을 부화시킨 결과 금나노 농도 증가에 따른 유의한 부화율과 유생의 치사율의 변화를 발견하지 못했다. 또한 토끼를 이용한 in vitro 실험에서도 별다른 독성이 나타나지 않았다(BaKri et al., 2008).
나노물질이 포함된 소비제품들은 몇 개나 되는가? , 2012a). 실제로 우리 주변에 나노물질이 포함된 소비제품들은 1,000여개 이상으로 알려져 있다. 이러한 나노제품들이 증가함에 따라 불가피하게 제조, 사용, 및 처리하는 과정 중에 환경으로 유출될 가능성이 부각되고 있다(Lee and An, 2010; Scholars et al.
나노제품들이 증가하면서 생긴 문제는 무엇인가? 실제로 우리 주변에 나노물질이 포함된 소비제품들은 1,000여개 이상으로 알려져 있다. 이러한 나노제품들이 증가함에 따라 불가피하게 제조, 사용, 및 처리하는 과정 중에 환경으로 유출될 가능성이 부각되고 있다(Lee and An, 2010; Scholars et al., 2011; Zhu et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (45)

  1. Asharani, PV, Lianwu, YI, Gong, Z and Valiyaveettil, S (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology, 5(1), pp, 43-54. 

  2. Bakri, SJ, Pulido, JS, Mukherjee, P, Marler, RJ and Mukhopadhyay, D (2008). Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina, 28, pp, 147-149. 

  3. Bar-Ilan, O, Albrecht, RM, Fako, VE and Furgeson, DY (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5(16), pp 1897-1910. 

  4. Bermudez, E, Mangum, JB, Wong, BA, Asgharian, B, Hext, PM, Warheit, DB and Everitt, JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological sciences, 77(2), pp, 347-357. 

  5. Boxall, AB, Chaudhry, Q, Sinclair, C, Jones, A, Aitken, R, Jefferson, B and Watts, C (2007). Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK. 

  6. Browning, LM, Lee, KJ, Huang, T, Nallathamby, PD, Lowman, JE and Xu, XHN (2009). Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale, 1(1), pp, 138-152. 

  7. Chivers, DP and Mirza, RS (2001). Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J. of chemical ecology, 27(1), pp, 45-51. 

  8. Fabrega, J, Luoma, SN, Tyler, CR, Galloway, TS and Lead, JR. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment international, 37(2), pp, 517-531. 

  9. Farkas, J, Christian, P, Urrea, JAG, Roos, N, Hassellov, M, Tollefsen, KE and Thomas, KV (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96(1), pp, 44-52. 

  10. Ferrari, MC, Messier, F and Chivers, DP (2007a). Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. Chemoecology, 17(4), pp, 263-266. 

  11. Ferrari, MC, Messier, F and Chivers, DP (2007b). First documentation of cultural transmission of predator recognition by larval amphibians. Ethology, 113(6), pp, 621-627. 

  12. Ferrari, MC, Messier, F and Chivers, DP (2008). Larval amphibians learn to match antipredator response intensity to temporal patterns of risk. Behavioral Ecology, 19(5), pp, 980-983. 

  13. Geffroy, B, Ladhar, C, Cambier, S, Treguer-Delapierre, M, Brethes, D and Bourdineaud, JP (2012). Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Nanotoxicology, 6(2), pp, 144-160. 

  14. George, S, Xia, T, Rallo, R, Zhao, Y, Ji, Z, Lin, S, Wang, X, Zhang, H, France, B, Schoenfeld, D, Damoiseaux, R, Liu, R, Lin, S, Bradley, K, Cohen, Y and Nel, AE (2011). Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS nano, 5(3), pp, 1805-1817. 

  15. Harper, S, Usenko, C, Hutchison, JE, Maddux, BLS and Tanguay, RL (2008). In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J. of Experimental Nanoscience, 3(3), pp, 195-206. 

  16. Harper, SL, Carriere, JL, Miller, JM, Hutchison, JE, Maddux, BL and Tanguay, RL (2011). Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS nano, 5(6), pp, 4688-4697. 

  17. Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC and Kahru, A (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), pp, 1308-1316. 

  18. Hu, CW, Li, M, Cui, YB, Li, DS, Chen J and Yang, LY (2010). Toxicological effects of TiO 2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42(4), pp, 586-591. 

  19. Huang, X, Neretina S and El-Sayed, MA. (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 21(48), pp, 1-31. 

  20. Hussain, SM, Hess, KL, Gearhart, JM, Geiss, KT and Schlager, JJ. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in vitro, 19(7), pp, 975-983. 

  21. Jani, PU, McCarthy, DE and Florence, AT (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. International J. of pharmaceutics, 105(2), pp, 157-168. 

  22. Kim, EJ, Park, YS, Kim, DB, Jeon, MA and Chung, H (2011). The study of Predator to Korean Salamander. J. of Natural Science, 15(1), pp, 23-26. [Korean Literature] 

  23. Kisin, ER, Murray, AR, Keane, MJ, Shi, XC, Schwegler-Berry, D, Gorelik, O, Arepalli, S, Castranava, V, Wallace, WE, Kagan, VE and Shvedova, AA (2007). Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells. J. of Toxicology and Environmental Health, Part A, 70(24), pp, 2071-2079. 

  24. Lee, BT and Ranville, JF (2012). The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. J. of hazardous materials, 213-214, pp, 434-439. 

  25. Lee, WM and An, YM (2010). Review Paper: Research Trends of Ecotoxicity of Nanoparticles in Water Environment. J. of Korean Society on Water Environment, 28(3), pp, 313-319. [Korean Literature] 

  26. Li, T, Albee, B, Alemayehu, M, Diaz, R, Ingham, L, Kamal, S, Rodriguez. M and Bishnoi, SW (2010). Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Analytical and bioanalytical chemistry, 398(2), pp, 689-700. 

  27. Long, TC, Saleh, N, Tilton, RD, Lowry, GV and Veronesi, B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environmental Science & Technology, 40(14), pp, 4346-4352. 

  28. Lovern, SB, Owen, HA, and Klaper, R (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2(1), pp, 43-48. 

  29. Mathis, A, Ferrari, MC, Windel, N, Messier, F and Chivers, DP (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society of London B: Biological Sciences, 275(1651), pp, 2603-2607. 

  30. Meyer, JN, Lord, CA, Yang, XY, Turner, EA, Badireddy, AR, Marinakos, SM, Chilkoti, A, Wiesner, MR and Auffan, M (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic toxicology, 100(2), pp, 140-150. 

  31. Oberdorster, E (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental health perspectives, 112(10), pp, 1058-1062 

  32. OECD (2010).Series on the Safety of Manufactured Nanomaterials No. 27:List of Manufactured Nanomaterials and List of Endpoints for Phase One of the Sponsorship Programme for the Testing of Manufactured Nanomaterials: Revision. 

  33. Perreault, F, Bogdan, N, Morin, M, Claverie, J and Popovic, R (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology, 6(2), pp, 109-120. 

  34. Perreault, F, Melegari, SP, Fuzinatto, CF, Bogdan, N, Morin, M, Popovic, R and Matias, WG (2014). Toxicity of pamamcoated gold nanoparticles in different unicellular models. Environmental toxicology, 29(3), pp, 328-336. 

  35. Renault, S, Baudrimont, M, Mesmer-Dudons, N, Gonzalez, P, Mornet, S and Brisson, A (2008). Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold bulletin, 41(2), pp 116-126. 

  36. Rodea-Palomares, I, Boltes, K, Fernandez-Pinas, F, Leganes, F, Garcia-Calvo, E, Santiago, J and Rosal, R (2011). Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicological Sciences, 119(1), pp, 135-145. 

  37. Scholars, W.W.I.C.F. PEW (2011). Project on Emerging Nanotechenologies, Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DC. 

  38. Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010a). Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), pp, 167-174. 

  39. Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010b). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100(2), pp, 178-186. 

  40. Tedesco, S, Doyle, H, Redmond, G and Sheehan, D (2008). Gold nanoparticles and oxidative stress in Mytilus edulis. Marine environmental research, 66(1), pp, 131-133. 

  41. Truong, L, Saili, KS, Miller, JM, Hutchison, JE and Tanguay, RL (2012a). Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp, 269-274. 

  42. Truong, L, Zaikova, T, Richman, EK, Hutchison, JE and Tanguay, RL (2012b). Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology, 6(7), pp, 691-699. 

  43. Van Hoecke, K, De Schamphelaere, KAC, Ali, Z, Zhang, F, Elsaesser, A, Rivera-Gil, P, Parak, WJ, Smagghe, G, Howard, CV and Janssen, CR. (2013). Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology, 7(1), pp, 37-47. 

  44. Yang, SY, Kim, JB, Min, MS, Suh, JH and Kang YJ(2001). Monograph of Korean Amphibia. Academi Publisher, Seoul, Korea. 

  45. Zhu, ZJ, Carboni, R, Quercio, MJ, Yan, B, Miranda, OR, Anderton, DL, Arcaro, KF, Rotello, VM and Vachet, RW (2010). Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small, 6(20), pp, 2261-2265. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로