$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

복합베어링으로 지지된 스핀들의 동적 해석
Dynamic Analysis of Spindle Supported by Multiple Bearings of Different Types 원문보기

한국정밀공학회지 = Journal of the Korean Society for Precision Engineering, v.32 no.2, 2015년, pp.117 - 125  

통반칸 (금오공과대학교 기전공학과 대학원) ,  배규현 (금오공과대학교 기전공학과 대학원) ,  홍성욱 (금오공과대학교 기전공학과)

Abstract AI-Helper 아이콘AI-Helper

This paper presents a dynamic modeling method for the indeterminate spindle-bearing system supported by multiple bearings of different types. A spindle-bearing system supported by ball and cylindrical roller bearings is considered. The de Mul's bearing model is extended for calculating ball and cyli...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • A modeling program for spindle-bearing system has been developed for spindles supported by multiple bearings of different types. An indeterminate spindle bearing system with angular contact ball bearings and cylindrical roller bearings is investigated to demonstrate the program. The simulation results show that the developed program can well predict the bearing stiffness and spindle dynamic behavior under general loading conditions.
  • The above scheme is used for formulating the relationship of the spindle shaft deflections and reaction forces. It is obvious that the developed scheme could be applicable to a variety of cross-section areas, with different materials and also with general loadings.
  • This paper extends the earlier work proposed by Hong et al.10 to develop a new scheme for calculation of bearing stiffness and spindle shaft reaction forces. The most important contribution of this work is modifying the spindle load and deflection formulation using the so-called modified transfer matrix method.

이론/모형

  • Jorgensen and Shin9 analyzed the angular contact bearing stiffness and natural frequencies of the spindle with the radial load applied. In their study, the spindle shaft was discretized into lumped elements with which the influence coefficient method was applied to find the load deflection relationship. This method could be applied only for spindles supported by two bearings or two sets of bearings in which each set of bearings is modeled as a stiffness matrix at a single node.
  • In this section, simulation is performed using Matlab to demonstrate the proposed method. Two kinds of bearings such as angular contact bearing B7014 and cylindrical bearing NU1014, are considered throughout the simulation work.
  • outlined a general method for modeling of spindle-angular contact bearing systems. The combination of bearing dynamic characteristics and spindle shaft using finite element method was performed to derive the dynamic equations for spindle-bearing systems, which were then iteratively solved by the Newton Raphson technique. Although their method was verified to be accurate, much computational effort was required to solve non-linear equations simultaneously.
  • 10 to develop a new scheme for calculation of bearing stiffness and spindle shaft reaction forces. The most important contribution of this work is modifying the spindle load and deflection formulation using the so-called modified transfer matrix method. The overall computational procedure is in the same manner as that in Hong et al.
  • It is noted that the Euler-Bernoulli beam theory does not give accurate deflection results, particularly in the case of thick beam, since the rotary inertia and shear deformation are not taken into account. Therefore, this section aims to improve the computational accuracy by using the Timoshenko beam theory.
본문요약 정보가 도움이 되었나요?

참고문헌 (14)

  1. SKF Group, "Bearing Arrangements," http://www.skf.com/group/products/bearings-units-housings/superprecision-bearings/principles/design-considerations/ bearing-arrangements/index.html (Accessed DEC. 7, 2014). 

  2. Nelson, H. D. and McVaugh, J. M., "The Dynamics of Rotor-Bearing Systems using Finite Elements," J. Manuf. Sci. and Eng., Trans. ASME, Vol. 98, No. 2, pp. 593-600, 1976. 

  3. Hong, S. W. and Park, J. H., "An Efficient Method for the Unbalance Response Analysis of Rotor-Bearing Systems," J. Sound & Vibration, Vol. 200, No. 4, pp. 491-504, 1997. 

  4. Bae, G. H., Lee, C. H., Hwang, J., and Hong, S. W., "Estimation of Axial Displacement in High-Speed Spindle due to Rotational Speed," J. Korean Soc. Precis. Eng., Vol. 29, No. 6, pp. 671-679, 2012. 

  5. Chen, L. K. and Ku, D. M., "Finite Element Analysis of Natural Whirl Speeds of Rotating Shafts," Computers and Structures, Vol. 40, No. 3, pp. 741-747, 1991. 

  6. Hong, S. W., Choi, C. S., and Lee, C. H., "Effects of Bearing Arrangement on the Dynamic Characteristics of High-Speed Spindle," J. Korean Soc. Precis. Eng., Vol. 30, No. 8, pp. 854-863, 2013. 

  7. Noel, D., Ritou, M., Furet, B., and Loch, S. L.,"Complete Analytical Expression of the Stiffness Matrix of Angular Contact Ball Bearings," J. Tribol. Trans. ASME, Vol. 135, No. 4, Paper No. 041101, 2013. 

  8. Tong, V. C. and Hong, S. W., "Characteristics of Tapered Roller Bearing Subjected to Combined Radial and Moment Loads," Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 323-328, 2014. 

  9. Jorgensen, B. R. and Shin, Y. C., ''Dynamics of Spindle-Bearing Systems at High Speeds including Cutting Load Effects,'' J. Manuf. Sci. Eng., Trans. ASME, Vol. 120, Vol. 2, pp. 387-394, 1998. 

  10. Hong, S. W., Kang, J. O., and Shin, Y. C., "Dynamic Characteristics of Indeterminate Rotor Systems with Angular Contact Ball Bearings Subject to Axial and Radial Loads," Int. J. Precis. Eng. Manuf., Vol. 3, No. 2, pp. 61-71, 2002. 

  11. Cao, Y. and Altintas, Y., "A General Method for the Modeling of Spindle-Bearing Systems," J. Mechanical Design, Trans. ASME, Vol. 126, No. 6, pp. 1089-1104, 2005. 

  12. Schaeffler Technologies, "BEARINX $^{(R)}$ -online Shaft Calculation," http://www.schaeffler.de/content.schaeffler.de/en/products_services/inafagproducts/calculating/bearinxonline/bearinx_online.jsp/ (Accessed DEC. 05 2014) 

  13. de Mul, J. M., Vree, J. M., and Maas, D. A., "Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction - Part I-II," J. Tribol., Trans. ASME, Vol. 111, pp. 149-155, 1989. 

  14. Harris, T. A. and Kotzalas, M. N., "Advanced Concept of Bearing Technology," New York, Taylor & Francis, 5th Ed., pp. 68-93, 2007. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로