$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

토모테라피 환자 치료 선량 분석을 위한 3DVH 프로그램 평가
Evaluation of 3DVH Software for the Patient Dose Analysis in TomoTherapy 원문보기

Progress in Medical Physics = 의학물리, v.26 no.4, 2015년, pp.201 - 207  

송주영 (전남대학교 의과대학 방사선종양학교실) ,  김용협 (화순전남대학교병원 방사선종양학과) ,  정재욱 (화순전남대학교병원 방사선종양학과) ,  윤미선 (전남대학교 의과대학 방사선종양학교실) ,  안성자 (전남대학교 의과대학 방사선종양학교실) ,  정웅기 (전남대학교 의과대학 방사선종양학교실) ,  남택근 (전남대학교 의과대학 방사선종양학교실)

초록
AI-Helper 아이콘AI-Helper

세기조절방사선치료의 선량정확도에 대한 품질보증 과정에서 측정된 데이터를 기반으로 실제 치료 환자 신체 내의 치료 선량분포를 재계산하여 치료계획 시 계산된 선량분포와 비교, 분석을 수행할 수 있는 프로그램들이 개발되어 임상에 사용 중에 있다. 본 연구에서는 아크첵(ArcCHECK)을 사용하여 품질보증 과정에서 측정한 토모테라피 선량 데이터를 기반으로 환자 내 치료선량 분포를 재구성할 수 있는 3DVH 프로그램의 새로운 기능 및 선량정확도를 평가하고자 하였다. 이를 위한 가상의 환자로 이차원 다이오드 검출기 배열 장치인 MapCHECK 영상을 사용하여 토모테라피 치료계획을 수립하고, 아크첵으로 선량을 측정 후 다시 3DVH를 사용하여 MapCHECK 검출기 영역의 선량분포를 재계산한 후, 실제 MapCHECK에서 측정된 선량분포와 비교하여, 그 오차를 분석하였다. 분석 결과, 측정값과 3DVH 계산값 비교를 위한 감마평가에서 평균 합격률은 $92.6{\pm}3.5%$로 측정값과 토모치료계획에서 계산된 선량과의 감마평가 평균 합격률 $99.0{\pm}1.2%$보다 오차가 큼을 보였다. 래피드아크에서 비교한 3DVH 계산값과 측정값의 감마평가 평균 합격률 $99.3{\pm}0.9%$와 비교하였을 경우에도 더 큰 오차를 보여, 토모테라피에서 3DVH 선량 계산 기능을 임상에서 신뢰하고 사용하기에는 더 많은 측정 결과들의 분석과 오차 원인에 대한 분석이 수행되어야 할 것으로 생각된다.

Abstract AI-Helper 아이콘AI-Helper

The new function of 3DVH software for dose calculation inside the patient undergoing TomoTherapy treatment by applying the measured data obtained by ArcCHECK was recently released. In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated by the comparison of measu...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The 3DVH software for the dose recalculation inside the body of the patient in the TomoTherapy DQA process is esti-mated to have some uncertainty like the results in this study considering the initial application in clinical cases. A proper verification study on the dosimetric accuracy should be performed by comparing the recalculated dose in the 3DVH software with the measured dose before application to a real clinical case.
  • 1. After acquisition of a computed tomography (CT) image of the MapCHECK combined with the MapPHAN, a total of ten TomoTherapy plans (five prostate and five head plans) were prepared based on the CT images. The virtual target and organ at risk (OAR) were contoured differently in each plan (Fig.
  • The DQA plans of the prepared TomoTherapy plans were made for the acquisition of measured dose data by using the ArcCHECK device. After the DQA measurement by using the ArcCHECK, as shown in Fig. 3, the error compared with the calculated dose in the TomoTherapy planning system was evaluated using the gamma evaluation method with a 3% dose difference and 3-mm distance-to-agreement criteria. The measured dose data by using the ArcCHECK was imported to 3DVH, and the 3D dose distribution in the MapCHECK phantom was recalculated.
  • In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated in order to verify the accuracy in the application of clinical cases. For this study, the real dose distribution was measured during the TomoTherapy treatment and compared with the dose calculated using 3DVH. In addition, the accuracy was evaluated with the comparison results of the 3DVH application in the RapidArc DQA process.
  • In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated in order to verify the accuracy in the application of clinical cases. For this study, the real dose distribution was measured during the TomoTherapy treatment and compared with the dose calculated using 3DVH.
  • In this study, we mainly evaluated the dosimetric accuracy of a recently released 3DVH software for dose verification of the patient in the TomoTherapy treatment, which should be confirmed before application in real clinical cases. The evaluated results in this study showed that the accuracy of 3DVH in the TomoTherapy DQA process was not good compared with the accuracy in the RapidArc DQA process.
  • The Novalis Tx linear accelerator (Varian Medical Systems, Palo Alto, CA) was used, as shown in Fig. 4 and the RapidArc plans were prepared using the Eclipse (Varian Medical Systems, Palo Alto, CA) planning system. The photon energy was 6MV, which is similar to the photon energy in the TomoTherapy plans, and a single arc was used in all the RapidArc plans.
  • The measured dose data by using the ArcCHECK was imported to 3DVH, and the 3D dose distribution in the MapCHECK phantom was recalculated. The calculated 2D coronal dose distribution at the level of diode detector array was exported in order to compare it with the dose distribution measured in the MapCHECK detector array during the TomoTherapy treatment beam delivery.
  • 1-3) A conventional basic procedure for DQA is the measurement of dose distribution in a phantom structure. The dosimetric errors are then analyzed by comparing the measured data with the calculated dose in a treatment planning system (TPS).

이론/모형

  • The DQA plans of the prepared TomoTherapy plans were made for the acquisition of measured dose data by using the ArcCHECK device. After the DQA measurement by using the ArcCHECK, as shown in Fig.
  • The additional ten RapidArc plans were prepared with the same MapCHECK phantom, target, OARs and dose prescription as used in the TomoTherapy plans. The DQA plans were prepared for dose measurement by using the ArcCEHCK. After the DQA accuracy was confirmed, the measured dose data by using the ArcCHECK was imported to 3DVH for 3D dose calculation in the MapCHECK phantom.
  • The calculated 2D coronal dose distribution at the level of MapCHECK diode detector array was exported, as in the case of the TomoTherapy analysis. The dose difference between the dose measured during RapidArc beam delivery and dose calculated in 3DVH was evaluated using the gamma evaluation method with the same criteria of the TomoTherapy case.
  • The dose difference between the measured and calculated dose in 3DVH was evaluated using the gamma evaluation method with a 3% dose difference and 3-mm distance-toagreement criteria.
본문요약 정보가 도움이 되었나요?

참고문헌 (13)

  1. Ezzell GA, Galvin JM, Low D, et al: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30(8):2089-115 (2003). 

  2. Palta JR, Liu C, Li JG: Quality assurance of Intensitymodulated radiation therapy. Int J Radiat Oncol Biol Phys 71(1 Suppl):S108-12 (2008). 

  3. Ezzell GA, Burmeister JW, Dogan N, et al: IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36(11): 5359-73 (2009). 

  4. Korevaar EW, Wauben DJ, Langendijk JA, et al: Clinical introduction of linac head-mounted 2D detector array based quality assurance system in head and neck IMRT. Radiother Oncol 100(3):446-52 (2011). 

  5. Nelms BE, Zhen H, Tome WA: Per-beam, planar IMRT QA passing rates do not predict relevant patient dose errors. Med Phys 38(2):1037-44 (2011). 

  6. Van Elmpt W, Nijsten S, Mijnheer B, et al: The next step in patient-specific QA: 3D dose verification of conformal and intensity-modulated RT based on EPID dosimetry and Monte Carlo dose calculations. Radiother Oncol 86(1):86-92 (2008). 

  7. Olch AJ: Evaluation of the accuracy of 3DVH software estimates of dose to virtual ion chamber and film in composite IMRT QA. Med Phys 39(1):81-6 (2012). 

  8. Nelms BE, Opp D, Robinson J, et al: VMAT QA: measurement-guided 4D dose reconstruction on a patient. Med Phys 39(7):4228-38 (2012). 

  9. Carrasco P, Jornet N, Latorre A, et al: 3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification. Med Phys 39(8):5040-9 (2012). 

  10. Stasi M, Bresciani S, Miranti A, et al: Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys 39(12):7626-34 (2012). 

  11. Nakaguchi Y, Araki F, Maruyama M, et al: Dose verification of IMRT by use of a COMPASS transmission detector. Radiol Phys Technol 5(1):63-70 (2012). 

  12. Visser R, Wauben DJ, De Groot M, et al: Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements. Med Phys 40(2):021710-1-6 (2013). 

  13. Opp D, Nelms BE, Zhang G, et al: Validation of measurement-guided 3D VMAT dose reconstruction on a heterogeneous anthropomorphic phantom. J Appl Clin Med Phys 14(1):70-84 (2013). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로