$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도
Augmenting Plant Immune Responses and Biological Control by Microbial Determinants 원문보기

Research in plant disease = 식물병연구, v.21 no.3, 2015년, pp.161 - 179  

이상무 (한국생명공학연구원 분자식물세균실험실, 과학기술연합대학원대학교 시스템생명공학전공) ,  정준휘 (한국생명공학연구원 분자식물세균실험실, 과학기술연합대학원대학교 시스템생명공학전공) ,  류충민 (한국생명공학연구원 분자식물세균실험실, 과학기술연합대학원대학교 시스템생명공학전공)

초록
AI-Helper 아이콘AI-Helper

식물은 다양한 병원성 미생물에 대하여 효과적인 방어 기제를 발전시켜 왔다. 최근 유전체와 다중 오믹스 기술의 발전은 우리에게 미생물 인자에 의한 식물 면역을 폭넓게 이해할 수 있는 단초를 제공해 주었다. 하지만 아직까지는 이러한 기술을 병 방제 전략에 이용한 적은 많지 않다. 그래서 본 리뷰에서 식물 면역의 기본 개념을 소개하고 최근 얻어진 결과들을 소개하였다. 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다. 특히 미생물 결정인자인 chitin, glucan, LPS/EPS, 미생물분자패턴, 항생제, 식물유사호르몬, AHLs, harpin, 비타민, 휘발성물질에 대한 결과를 자세하게 기술하였다. 이 리뷰를 통하여 많은 과학자들과 농민들이 미생물 결정인자 기반의 생물적 방제에 대한 지식이 폭넓어지고, 다양한 미생물 결정 인자가 앞으로 농업현장의 종합적인 병방제 전략의 하나로 자리매김하기를 바란다.

Abstract AI-Helper 아이콘AI-Helper

Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. Howeve...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 하지만 아직까지는 이러한 기술을 병 방제 전략에 이용한 적은 많지 않다. 그래서 본 리뷰에서 식물 면역의 기본 개념을 소개하고 최근 얻어진 결과들을 소개하였다. 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다.
  • 그래서 본 리뷰에서 식물 면역의 기본 개념을 소개하고 최근 얻어진 결과들을 소개하였다. 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다. 특히 미생물 결정인자인 chitin, glucan, LPS/EPS, 미생물분자패턴, 항생제, 식물유사호르몬, AHLs, harpin, 비타민, 휘발성물질에 대한 결과를 자세하게 기술하였다.
  • 본 리뷰에서는 최근 지금까지 알려진 미생물 유래 식물 면역증진 물질을 소개하고 이를 농업에 활용할 수 있는 방안을 모색하는데 목적이 있다. 앞서 비슷한 리뷰에서 다루지 않았던 진균, 세균, 바이러스유래 식물면역 증진 물질들을 10가지 그룹으로 나누고 각 그룹에 해당하는 인자들의 예와 면역유도방법과 포장적용 시험, 기전연구를 중심으로 기술하였다(De Vleess-chauwer와 Hofte, 2009).
  • oxysporum이 jasmonic acid을 생산할 수 있는 것으로 알려졌다(Brodhun 등, 2013; Cole 등, 2014). 이 결과는 기존의 비병원성 F. oxysporum에 의한 jasmonic acid 의존적 신호전달 체계가 F. oxysporum에 의해서 직접적으로 생산된 jasmonic acid에 의한 가능성도 제시하는 새로운 결과이다. 세균에서는 대표적으로 jasmonic acid의 유사 물질인 coronatine을 생성한다(Uppalapati 등, 2005).
  • 이번 세션에서는 바이러스, 세균, 진균에 의한 식물면역유도에 대하여 기술하겠다. 식물면역의 필요충분조건은 먼저 처리하는 미생물이나 그 결정인자가 병원균과 공간적으로 분리되어야 한다.
  • 지금까지 미생물 유래 결정인자에 의한 식물면역을 이용한 식물병 방제에 대해서 살펴 보았다. 생물적 방제의 한 부분으로만 사용되었던 다양한 이러한 기술들이 최근 다양한 접근법으로 식물 면역 증진제로 사용이 가능하다는 것이 밝혀지고 있어 앞으로 농업에 적용할 가능성이 높아 보인다.

가설 설정

  • 이를 생태학적으로 식물에너지보존이론(allocation fitness cost)로 설명하는데 ‘식물은 한정된 에너지를 가지고 있다고 전제하고 면역 증진에 과도한 에너지를 사용함으로써 생장에 필요한 에너지가 부족하여 생장이 감소한다’는 가설이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
유전체와 다중 오믹스 기술의 발전은 우리생활에 무엇을 제공해 주었는가? 식물은 다양한 병원성 미생물에 대하여 효과적인 방어 기제를 발전시켜 왔다. 최근 유전체와 다중 오믹스 기술의 발전은 우리에게 미생물 인자에 의한 식물 면역을 폭넓게 이해할 수 있는 단초를 제공해 주었다. 하지만 아직까지는 이러한 기술을 병 방제 전략에 이용한 적은 많지 않다.
미생물 결정인자에는 어떤 요인들이 있는가? 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다. 특히 미생물 결정인자인 chitin, glucan, LPS/EPS, 미생물분자패턴, 항생제, 식물유사호르몬, AHLs, harpin, 비타민, 휘발성물질에 대한 결과를 자세하게 기술하였다. 이 리뷰를 통하여 많은 과학자들과 농민들이 미생물 결정인자 기반의 생물적 방제에 대한 지식이 폭넓어지고, 다양한 미생물 결정 인자가 앞으로 농업현장의 종합적인 병방제 전략의 하나로 자리매김하기를 바란다.
애기장대를 통해 밝혀낸 식물-미생물 상호작용의 새로운 현상 중 식물면역과 관련된 가장 획기적인 발견은? 애기장대를 통하여 지금까지 우리가 알지 못했던 식물-미생물 상호작용의 새로운 현상들을 이해하게 되는 계기가 되었다(Nishimura와 Dangl, 2010). 그 중에 식물면역과 관련된 가장 획기적인 발견은 식물의 선모 단백질 수용체(flagellin receptor)이다. 식물에서 최초로 식물병원성 세균의 선모를 형성하는 flagellin 중 22개의 단백질이 세균의 종류에 상관없이 일정하며 이러한 분자 패턴(molecular pattern)을 인식하는 식물의 인식체(receptor)를 규명하였다(Gomez-Gomez와 Boller, 2000).
질의응답 정보가 도움이 되었나요?

참고문헌 (236)

  1. Agrios, G. 2004. Plant pathology. 5th ed., pp. 159-160, 21, 240-241. Elsevier Academic Press, Burlington. 

  2. Ahmed, S. A., Sanchez, C. P. and Candela, M. E. 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol. 106: 817-824. 

  3. Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515. 

  4. Ahn, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143: 838-848. 

  5. Akira, S. and Takeda, K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. 

  6. An, C. and Mou, Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53: 412-428. 

  7. Anderson, J. P., Lichtenzveig, J., Gleason, C., Oliver, R. P. and Singh, K. B. 2010. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol. 154: 861-873. 

  8. Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. and Boucher, C. A. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553. 

  9. Ausubel, F. M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6: 973-979. 

  10. Ayers, A. R., Ebel, J., Finelli, F., Berger, N. and Albersheim, P. 1976. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 57: 751-759. 

  11. Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxidefueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29. 

  12. Bakker, P. A., Pieterse, C. M. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. 

  13. Balbi, V. and Devoto, A. 2008. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177: 301-318. 

  14. Bashan, B. and Cohen, Y. 1982. Tobacco necrosis virus induces systemic resistance in cucumbers. Physiol. Plant Pathol. 23: 137-144. 

  15. Basse, C. W., Fath, A. and Boller, T. 1993. High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268: 14724-14731. 

  16. Bauer, D. W., Wei, Z. M., Beer, S. V. and Collmer, A. 1995. Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact. 8: 484-491. 

  17. Baureithel, K., Felix, G. and Boller, T. 1994. Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J. Biol. Chem. 269: 17931-17938. 

  18. Bazzini, A. A., Asurmendi, S., Hopp, H. E. and Beachy, R. N. 2006. Tobacco mosaic virus (TMV) and Potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J. Gen. Virol. 87: 1005-1012. 

  19. Benhamou, N., Garand, C. and Goulet, A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol. 68: 4044-4060. 

  20. Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Multigenic and Induced Systemic Resistance in Plants, eds. by S. Tuzun and E. Bent, pp. 9-22. Springer Science and Business Media, Inc. 

  21. Bentley, R. and Meganathan, R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev. 46: 241-280. 

  22. Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214. 

  23. Boller, T. and Felix, G. 1996. Olfaction in plants: Specific perception of common microbial molecules. In: Biology of Plant-Microbe Interactions, eds. by G. Stacey, B. Mullin, and P. M. Gresshof, pp. 1-9. Inter. Natl Soc. Mol. Plant-Microbe Interac., St. Paul. 

  24. Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2004. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23: 1245-1247. 

  25. Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A. and Mundy, J. 2005. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol. 138: 1037-1045. 

  26. Brodhun, F., Cristobal-Sarramian, A., Zabel, S., Newie, J., Hamberg, M. and Feussner, I. 2013. An iron 13S-lipoxygenase with an alphalinolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8: e64919. 

  27. Broekaert, W. F., Delaure, S. L., De Bolle, M. F. and Cammue, B. P. 2006. The role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393-416. 

  28. Brooker, R. J., Widmaier, E. P., Graham, L. E. and Stiling, P. D. 2008. Biology 1st ed. McGraw-Hill. 

  29. Campos-Soriano, L., Garcia-Martinez, J. and San Segundo, B. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 13: 579-592. 

  30. Charkowski, A. O., Alfano, J. R., Preston, G., Yuan, J., He, S. Y. and Collmer, A. 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180: 5211-5217. 

  31. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. 

  32. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Hostmicrobe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814. 

  33. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., B. H. Cho, Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075. 

  34. Choi, D., Maeng, J. M., Ding, J. L. and Cha, W. S. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378. 

  35. Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40: 882-892. 

  36. Chung, J. H., Song, G. C. and Ryu, C. M. 2015. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. DOI 10.1007/s11103-015-0344-8 

  37. Cole, S. J., Yoon, A. J., Faull, K. F. and Diener, A. C. 2014. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine-and leucine-conjugated jasmonates. Mol. Plant Pathol. 15: 589-600. 

  38. Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071. 

  39. Conti, G. G., Pianezzola, A., Arnoldi, A., Violini, G. and Maffi, D. 1990. Preinoculation with tobacco necrosis virus enhances perosidase active and lignification. J. Phytopathol. 128: 191-202. 

  40. Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S. and Gianinazzipearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant-Microbe Interact. 11: 1017-1028. 

  41. Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653. 

  42. Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189. 

  43. Coutte, R. H. A. and Wagih, E. E. 1983. Induced resistance to virus infection. Phtopathologische Zeitschrift 107: 57-69. 

  44. Coventry, H. S. and Dubery, I. A. 2001 Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 58: 149-158. 

  45. Cui, Y., Madi, L., Mukherjee, A., Dumenyo, C. K. and Chatterjee, A. K. 1996. The RsmA-mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpNEcc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol. Plant-Microbe Interact. 9: 565-573. 

  46. Culver, J. N. 1996. Tobamovirus cross protection using a potexvirus vector. Virology 226: 228-235. 

  47. Demain, A. L. 1972. Riboflavin oversynthesis. Annu. Rev. Microbiol. 26: 369-388. 

  48. De Meyer, G. and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 588-593. 

  49. De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Metraux, J. P. and Hofte, M. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12: 450-458. 

  50. De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104: 279-286. 

  51. Dempsey, D. A. and Klessig, D. F. 2012. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545. 

  52. De Roman, M., Fernandez, I., Wyatt, T., Sahrawy, M., Heil, M. and Pozo, M. J. 2011. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J. Ecol. 99: 36-45. 

  53. Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47: 1530-1540. 

  54. De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. and Hofte, M. 2008. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactinmediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148: 1996-2012. 

  55. De Vleesschauwer, D., Chernin, L. and Hofte, M. M. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. 9: 9. 

  56. Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741-1746. 

  57. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548. 

  58. Dong, H., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20: 207-215. 

  59. Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811. 

  60. Dow, M., Newman, M. A. and von Roepenack, E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38: 241-261. 

  61. D'Alessandro, A., Amelio, I., Berkers, C. R., Antonov, A., Vousden, K. H., Melino, G. and Zolla, L. 2014. Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 5: 7722-7733. 

  62. Engelberth, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125: 369-377. 

  63. Engelhardt, S., Lee, J., Gabler, Y., Kemmerling, B., Haapalainen, M. L., Li, C. M., Wei, Z., Keller, H., Joosten, M., Taira, S. and Nurnberger, T. 2009. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Plant J. 57: 706-717. 

  64. Erbs, G. and Newman, M. A. 2003. The role of lipopolysaccharides in induction of plant defence responses. Mol. Plant Pathol. 4: 421-425. 

  65. Farag, M. A., Ryu, C. M., Sumner, L. W. and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262-2268. 

  66. Farag, M. A., Zhang, H. and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne aignals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39: 1007-1018. 

  67. Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276. 

  68. Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32: 375-390. 

  69. Fletcher, J. T. 1978. The use of avirulent virus strain to protect plants against the effects of virulent strains. Ann. Appl. Biol. 110-114. 

  70. Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279: 1132-1140. 

  71. Fujikawa, T., Sakaguchi, A., Nishizawa, Y., Kouzai, Y., Minami, E., Yano, S., Koga, H., Meshi, T. and Nishimura, M. 2012. Surface alpha-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 8: e1002882. 

  72. Fukuda, H., Ogawa, T. and Tanase, S. 1993. Ethylene production by micro-organisms. Adv. Microb. Physiol. 35: 275-306. 

  73. Gerber, I. B. and Dubery, I. A. 2004. Protein phosphorylation in Nicotiana tabacum cells in response to perception of lipopolysaccharides from Burkholderia cepacia. Phytochemistry 65: 2957-2966. 

  74. Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011. 

  75. Granado, J., Felix, G. and Boller, T. 1995. Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol. 107: 485-490. 

  76. Guimil, S., Chang, H. S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E. J., Docquier, M., Descombes, P., Briggs, S. P. and Paszkowski, U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci. USA. 102: 8066-8070. 

  77. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319. 

  78. Hammerschmidt, R. and Yang-Cashman, P. 1995. Induced resistance in cucurbits. In: Induced Resistance to Disease in Plants, eds. by R. Hammerschmidt and J. Kuc, pp. 63-85. Kluwer Academic Publishers, Dordrecht. 

  79. Hammerschmidt, R. and Nicholson, R. L. 1999. A survey of plant defense responses to pathogens. In: Induced Plant Defenses Against Pathogens and Herbivores, eds. by A. Agrawal and S. Tuzun, APS Press, St Paul, MN. 

  80. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacSdependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19: 924-930. 

  81. Harman, G. E., Petzoldt, R., Comis, A. and Chen, J. 2004a. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94: 147-153. 

  82. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004b. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. 

  83. Harrison, M. J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361-389. 

  84. Hause, B., Maier, W., Miersch, O., Kramell, R. and Strack, D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130: 1213-1220. 

  85. Hause, B. and Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184-196. 

  86. Hause, B., Mrosk, C., Isayenkov, S. and Strack, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68: 101-110. 

  87. He, S. Y., Huang, H. C. and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266. 

  88. Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346. 

  89. Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88: 645-654. 

  90. Heil, M., Fiala, B., Maschwitz, U. and Linsenmair, K. E. 2001. On benefits of indirect defence: short-and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395-403. 

  91. Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61-67. 

  92. Herrera-medina, M. J., Gagnon, H., Piche, Y., Ocampo, J. A., Garciagarrido, J. M. and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164: 993-998. 

  93. Hossain, M. M., Sultana, F., Kubota, M. and Hyakumachi, M. 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304: 227-239. 

  94. Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41-66. 

  95. Huang, H. C., Lin, R. H., Chang, C. J., Collmer, A. and Deng, W. L. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8: 733-746. 

  96. Hugues, J. A. and Ollennu, L. A. A. 1994. Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus-a review. Plant Pathol. 43: 442-457. 

  97. Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858. 

  98. Ishiga, Y., Uppalapati, S. R., Ishiga, T., Elavarthi, S., Martin, B. and Bender, C. L. 2009. The phytotoxin coronatine induces lightdependent reactive oxygen species in tomato seedlings. New Phytol. 181: 147-160. 

  99. Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A. L. and He, S. Y. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129-1139. 

  100. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. 

  101. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA. 103: 11086-11091. 

  102. Kamoun, S. 2001. Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr. Opin. Plant Biol. 4: 295-300. 

  103. Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. 2015. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 20: 206-211. 

  104. Kim, J. F. and Beer, S. V. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180: 5203-5210. 

  105. Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B. and Fritig, B. 2000. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124: 1027-1038. 

  106. Klarzynski, O., Descamps, V., Plesse, B., Yvin, J. C., Kloareg, B. and Fritig, B. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant-Microbe Interact. 16: 115-122. 

  107. Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F. and Kunkel, B. N. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26: 509-522. 

  108. Kloepper, R. F., Norling, L. L., McDaniel, M. L. and Landt, M. 1991. Biochemical basis for the specificity of alloxan inactivation of calmodulin-dependent protein kinase II. Cell Calcium 12: 351-359. 

  109. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology 94: 1259-1266. 

  110. Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S. and Doke, N. 2001. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur. J. Plant Pathol. 107: 523-533. 

  111. Koornneef, M. and Meinke, D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909-921. 

  112. Kosaka, Y., Ryang, B.-S., Kobori, T., Shiomi, H., Yasuhara H. and Kataoka, M. 2006. Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis. 90: 67-72. 

  113. Kuc, J. 1982. Induced immunity to plant disease. Bioscience 32: 854-860. 

  114. Kurth, E. G., Peremyslov, V. V., Prokhnevsky, A. I., Kasschau, K. D., Miller, M., Carrington, J. C. and Dolja, V. V. 2012. Virus-derived gene expression and RNA interference vector for grapevine. J. Virol. 86: 6002-6009. 

  115. Kwon, Y. S., Ryu, C. M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M. J., Kim, H. K. and Bae, D. W. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232: 1355-1370. 

  116. Laurie-Berry, N., Joardar, V., Street, I. H. and Kunkel, B. N. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19: 789-800. 

  117. Le Blanc, J. G., Laino, J. E., del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., de Valdez, G. F., de Giori, G. S. and Sesma, F. 2011. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J. Appl. Microbiol. 111: 1297-1309. 

  118. Lee, J., Lee, K. and Shin, S. 2000. Theoretical studies of the response of a protein structure to cavity-creating mutations. Biophys. J. 78: 1665-1671. 

  119. Lee, R. F. and Keremane, M. L. 2013. Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 4: 259. 

  120. Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance against Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149-155. 

  121. Leigh, J. A. and Coplin, D. L. 1992. Exopolysaccharides in plantbacterial interactions. Annu. Rev. Microbiol. 46: 307-346. 

  122. Lindgren, P. B., Peet, R. C. and Panopoulos, N. J. 1986. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168: 512-522. 

  123. Liu, F., Wei, F., Wang, L., Liu, H., Zhu, X. and Liang, Y. 2010. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 74: 330-336. 

  124. Lo, C. T., Liao, T. F. and Deng, T. C. 2000. Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90: S47. 

  125. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. 

  126. Lund, S. T., Stall, R. E. and Klee, H. J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371-382. 

  127. Mabrouk, Y., Mejri, S., Delavault, P., Simier, P. and Belhadj O. 2014. Lipopolysaccharide isolated from Rhizhobium leguminosarum strain P.SOM induces resistance in pea roots against Orobanche crenata. Afr. J. Microbiol. Res. 8: 2624-2630. 

  128. Madi, L. and Katan, J. 1998. Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol. Mol. Plant Pathol. 53: 163-175. 

  129. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139-146. 

  130. Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D. and Defago, G. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88: 678-684. 

  131. McDowell, J. M. and Dangl, J. L. 2000. Signal transduction in the plant immune response. Trends Biochem. Sci. 25: 79-82. 

  132. McKinney, H. H. 1926. Virus mixtures that may not be detected in young tobacco plants. Phytopathology 16: 883. 

  133. Meyer, A., Puhler, A. and Niehaus, K. 2001. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213: 214-222. 

  134. Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. 

  135. Misra, R. S. and Sriram, S. 2002. Medicinal value and export potential of tropical tuber crops. In: Series Recent Progress in Medicinal Plants, Crop Improvement, Production Technology and Commerce, eds. by J. N. Govil, J. Pandey, B. G. Shivkumar and V. K. Singh, pp. 376-386. SCITech, USA. 

  136. Mithofer, A., Fliegmann, J. and Ebel, J. 1999. Isolation of a French bean (Phaseolus vulgaris L.) homolog to the beta-glucan elicitorbinding protein of soybean (Glycine max L.). Biochim. Biophys. Acta. 1418: 127-132. 

  137. Mithofer, A., Fliegmann, J., Neuhaus-Url, G., Schwarz, H. and Ebel, J. 2000. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family. Biol. Chem. 381: 705-713. 

  138. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. 104: 19613-19618. 

  139. Nakazono-Nagaoka, E., Takahashi, T., Shimizu, T., Kosaka, Y., Natsuaki, T., Omura, T. and Sasaya, T. 2009. Cross-protection against Bean yellow mosaic virus (BYMV) and Clover yellow vein virus by Attenuated BYMV isolate M11. Phytopathology 99: 251-257. 

  140. Newman, M. A., von Roepenack, E., Daniels, M. and Dow, M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1: 25-31. 

  141. Nicaise, V. 2014. Crop immunity against viruses: outcomes and future challenges. Front Plant Sci. 5: 660. 

  142. Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N. and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500-507. 

  143. Nishimura, M. T. and Dangl, J. L. 2010. Arabidopsis and the plant immune system. Plant J. 61: 1053-1066. 

  144. Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N. and Omori, T. 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110: 387-392. 

  145. Nuhse, T. S., Peck, S. C., Hirt, H. and Boller, T. 2000. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J. Biol. Chem. 275: 7521-7526. 

  146. Nurnberger, T., Brunner, F., Kemmerling, B. and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266. 

  147. Nunez-Pastrana, R., Arcos-Ortega, G. F., Souza-Perera, R. A., Sanchez-Borges, C. A., Nakazawa-Ueji, Y. E., Garcia-Villalobos, F. J., Guzman-Antonio, A. A. and Zuniga-Aguilar, J. J. 2011. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. Eur. J. Plant Pathol. 131: 669-683. 

  148. Okuno, T., Nakayama, M., Okajima, N. and Furusawa, I. 1991. Systemic resistance to downy mildew and appearance of acid solution proteteins in cucumber leaves. Ann. Phytopathol. Soc. Japan 57: 203-211. 

  149. Ongena, M., Jacques, P., Toure, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Micro-biol. Biotechnol. 69: 29-38. 

  150. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. 

  151. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. 

  152. Ortmann, I. and Moerschbacher, B. M. 2006. Spent growth medium of Pantoea agglomerans primes wheat suspension cells for augmented accumulation of hydrogen peroxide and enhanced peroxidase activity upon elicitation. Planta 224: 963-970. 

  153. Pajerowska-Mukhtar, K. M., Emerine, D. K. and Mukhtar, M. S. 2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18: 402-411. 

  154. Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113-116. 

  155. Park, K., Kloepper, J. W. and Ryu, C. M. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18: 1095-1100. 

  156. Paszkowski, U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9: 364-370. 

  157. Pierson, L. S., 3rd, Wood, D. W. and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36: 207-225. 

  158. Pieterse, C. M. J., Van Pelt, J. A., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Keurentjes, J. J. B., Verhagen, B. W. M., Knoester, M., Ientse Van der Sluis, Bakker, P. A. H. M. and Van Loon, L. C. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur. J. Plant Pathol. 107: 51-61. 

  159. Pieterse, C. M. J., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Van Pelt, J. A., Keurentjes, J. J. B., Knoester, M. and Van Loon, L. C. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis: involvement of jasmonate and ethylene. In: Biology of Plant-Microbe Interactions, eds. by P. J. G. M. De Wit, T. Bisseling and W. J. Stiekema, pp. 291-296. International Society for Molecular Plant-Microbe Interactions., St. Paul. 

  160. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375. 

  161. Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M. and Azcon-Aguilar, C. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53: 525-534. 

  162. Pozo, M. J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398. 

  163. Pozo, M. J., Verhage, A., Garcia-andrade, J., Garcia, J. M. and Azconaguilar, C. 2009. Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas-Functional Processes and Ecological Impact, eds. by C. Azcon-Aguilar, J. M. Barea, S. Gianinazzi and V. Gianinazzi-Pearson, pp. 123-135. Springer. 

  164. Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10: 761-768. 

  165. Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598. 

  166. Preston, G., Huang, H. C., He, S. Y. and Collmer, A. 1995. The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8: 717-732. 

  167. Qutob, D., Kamoun, S. and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32: 361-373. 

  168. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfActa.nts and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062. 

  169. Raffaele, S., Rivas, S. and Roby, D. 2006. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett. 580: 3498-3504. 

  170. Rahman, A., Kuldau, G. A. and Uddin, W. 2014. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 104: 614-623. 

  171. Rahman, A., Uddin, W. and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16: 546-558. 

  172. Ross, A. F. 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329-339. 

  173. Ross, A. F. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358. 

  174. Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W. and Bais, H. P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 3: 130-138. 

  175. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. 

  176. Ryu, C. M. Cho, H. K., Lee, C. H., Murphy, J. F., Lee, J. K. and Kloepper, J. W. 2013. Modulation of quorum sensing in acyl-homoserine lactone-producing or-degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166. Plant Pathol. J. 29: 182-192. 

  177. Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. and Kogel, K. H. 2011. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157: 1407-1418. 

  178. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 29: 909-918. 

  179. Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G. and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285: 9444-9451. 

  180. Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E. and Trillas, I. 2007. Proteome, salicylic acid and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7: 3943-3952. 

  181. Sequeira, L. 1983. Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37: 51-79. 

  182. Serfling, A., Wirsel, S. G., Lind, V. and Deising, H. B. 2007. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97: 523-531. 

  183. Sharp, J. K., Valent, B. and Albersheim, P. 1984. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem. 259: 11312-11320. 

  184. Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., Kobayashi, Y., Hsu, F. F., Sharon, M., Browse, J., He, S. Y., Rizo, J., Howe, G. A. and Zheng, N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405. 

  185. Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59: 223-233. 

  186. Silipo, A., Molinaro, A., Sturiale, L., Dow, J. M., Erbs, G., Lanzetta, R., Newman, M. A. and Parrilli, M. 2005. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 280: 33660-33668. 

  187. Somerville, C. and Koornneef, M. 2002. A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3: 883-889. 

  188. Song, G. C., Choi, H. K. and Ryu, C. M. 2013. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann. Bot. 111: 925-934. 

  189. Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14: 9803-9819. 

  190. Spoel, S. H., Johnson, J. S. and Dong, X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104: 18842-18847. 

  191. Stein, E., Molitor, A., Kogel, K. H. and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49: 1747-1751. 

  192. Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y. and Mayama, S. 2001. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol. Plant-Microbe Interact. 14: 477-486. 

  193. Taheri, P. and Hofte, M. 2007. Induction of systemic defense responses in rice against the sheath blight pathogen Rhizoctonia solani, by means of riboflavin. Commun. Agric. Appl. Biol. Sci. 72: 983-987. 

  194. Taheri, P. and Tarighi, S. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J. Plant Physiol. 167: 201-208. 

  195. Taheri, P. and Tarighi, S. 2011. A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J. Plant Physiol. 168: 1114-1122. 

  196. Takai, R., Hasegawa, K., Kaku, H., Shibuya, N. and Minami, E. 2001. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci. 160: 577-583. 

  197. Taki, A., Yamagishi, N. and Yoshikawa, N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res. 176: 251-258. 

  198. Tamura, A., Kato, T., Taki, A., Sone, M., Satoh, N., Yamagishi, N., Takahashi, T., Ryo, B. S., Natsuaki, T. and Yoshikawa, N. 2013. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections. Virology 446: 314-324. 

  199. Thomma, B. P., Eggermont, K., Tierens, K. F. and Broekaert, W. F. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121: 1093-1102. 

  200. Tran, H., Ficke, A., Asiimwe, T., Hofte, M. and Raaijmakers, J. M. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742. 

  201. Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N. and Ishida, I. 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94: 1029-1034. 

  202. Uppalapati, S. R., Ayoubi, P., Weng, H., Palmer, D. A., Mitchell, R. E., Jones, W. and Bender, C. L. 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42: 201-217. 

  203. Valkonen, J. P., Rajamaki, M. L. and Kekarainen, T. 2002. Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. Mol. Plant-Microbe Interact. 15: 683-692. 

  204. Vander, P., Varum, K. M., Domard, A., Gueddari, N. E. E. and Moerschbacher, B. M. 1998. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol. 118: 1353-1359. 

  205. van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. 

  206. van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254. 

  207. van Peer, R. and Schippers, B. 1992. LPS of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherland J. Plant Pathol. 98: 129-139. 

  208. Veit, S., Worle, J. M., Nurnberger, T., Koch, W. and Seitz, H. U. 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis and tobacco. Plant Physiol. 127: 832-841. 

  209. Vijayan, P., Shockey, J., Levesque, C. A., Cook, R. J. and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 7209-7214. 

  210. Viterbo, A., Wiest, A., Brotman, Y., Chet, I. and Kenerley, C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 8: 737-746. 

  211. Vlot, A. C., Klessig, D. F. and Park, S. W. 2008. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11: 436-442. 

  212. Wafaa, M. H., W., Hussein, M. M., Mehanna, H. M. and El-Moneim, D. 2014. Bacteria polysaccharides elicit resistance of wheat against some biotic and abiotic stress. Int. J. Pharm. Sci. Rev. Res. 29: 292-298. 

  213. Waller, F., Mukherjee, K., Deshmukh, S. D., Achatz, B., Sharma, M., Schafer, P. and Kogel, K. H. 2008. Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J. Plant Physiol. 165: 60-70. 

  214. Wan, J., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471-81. 

  215. Wasternack, C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100: 681-697. 

  216. Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512. 

  217. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. 

  218. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309-348. 

  219. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C. and Bakker, P. A. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412. 

  220. Wen, F., Lister, R. M. and Fattouh, F. A. 1991. Cross-protection among strains of barley yellow dwarf virus. J. Gen. Virol. 72: 791-799. 

  221. Yamada, A., Shibuya, N., Kodama, O. and Akatsuka, T. 1993. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci. Biotech. Biochem. 57: 405-409. 

  222. Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T. and Shibuya, N. 2000. Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12: 817-826. 

  223. Yang, J. W., Yu, S. H. and Ryu, C. M. 2009. Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25: 389-399. 

  224. Yang, S. Y., Park, M. R., Kim, I. S., Kim, Y. C., Yang, J. W. and Ryu, C.-M. 2010. 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovorum SCC1 in tobacco. Eur. J. Plant Pathol. 129: 371-378. 

  225. Yang, Z., Endo, S., Tanida, A., Kai, K. and Watanabe, N. 2009. Synergy effect of sodium acetate and glycosidically bound volatiles on the release of volatile compounds from the unscented cut flower (Delphinium elatum L. "Blue Bird"). J. Agric. Food Chem. 57: 6396-6401. 

  226. Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 69: 7343-7353. 

  227. Yoon, J. Y., Ahn, H. I., Kim, M., Tsuda, S. and Ryu, K. H. 2006. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Res. 118: 23-30. 

  228. You, B. J., Chiang, C. H., Chen, L. F., Su, W. C. and Yeh, S. D. 2005. Engineered mild strains of Papaya ringspot virus for broader cross protection in Cucurbits. Phytopathology 95: 533-540. 

  229. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U. S. A. 101: 15811-15816. 

  230. Zhang, B., Ramonell, K., Somerville, S. and Stacey, G. 2002. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 15: 963-970. 

  231. Zhang, Z. M., Wu, W. W. and Li, G. K. 2008. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity. J. Chromatogr. Sci. 46: 690-696. 

  232. Zhang, Z. M., Wu, W. W. and Li, G. K. 2009. Study of the alarming volatile characteristics of Tessaratoma papillosa using SPME-GCMS. J. Chromatogr. Sci. 47: 291-296. 

  233. Zhang, Z. Z., Li, Y. B., Qi, L. and Wan, X. C. 2006. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea. J. Agric. Food Chem. 54: 3936-3940. 

  234. Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8: 353-360. 

  235. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760. 

  236. Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20: 10-16. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로