$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bioconversion of Cyanidin-3-Rutinoside to Cyanidin-3-Glucoside in Black Raspberry by Crude α-ʟ-Rhamnosidase from Aspergillus Species 원문보기

Journal of microbiology and biotechnology, v.25 no.11, 2015년, pp.1842 - 1848  

Lim, Taehwan (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ,  Jung, Hana (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University) ,  Hwang, Keum Taek (Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Cyanidin-3-glucoside (C3G) has been known to be more bioavailable than cyanidin-3-rutinoside (C3R), the most abundant anthocyanin in black raspberry (Rubus occidentalis). The aim of this study was to enhance the bioavailability of anthocyanins in black raspberry by cleaving ʟ-rhamnose in C3R using c...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • The most effective CEE of each species was mixed with black raspberry juice (BRJ) to examine the bioconversion of C3R to C3G in the food matrix. To the best of our knowledge, this study is the first trial to compare the bioconversion of an anthocyanin in black raspberry using the five Aspergillus species.

대상 데이터

  • A. usamii KCTC 6956 was purchased from Korean Collection for Type Cultures (Daejeon, Korea). A.

이론/모형

  • 8. The protein concentration was estimated by the Bradford method [2] using bovine serum albumin as the standard.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Abe K, Gomi K, Hasegawa F, Machida M. 2006. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162: 143-153. 

  2. Bradford MM. 1976. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. 

  3. Bram B, Solomons G. 1965. Production of the enzyme naringinase by Aspergillus niger. Appl. Microbiol. 13: 842-845. 

  4. Choe MR, Kang JH, Yoo H, Choe SY, Yang CH, Kim MO, Yu R. 2007. Cyanidin and cyanidin-3-O-β-D-glucoside suppress the inflammatory responses of obese adipose tissue by inhibiting the release of chemokines MCP-1 and MRP-2. J. Food Sci. Nutr. 12: 148-153. 

  5. Fuse M, Iljima M, Okamoto N, Takemura M, Tateno Y. 1988. Process for preparing ?-rhamnose. US Patent No. 4,758,283. 

  6. Gallego M, Pinaga F, Ramón D, Vallés S. 2001. Purification and characterization of an α-ʟ-rhamnosidase from Aspergillus terreus of interest in winemaking. J. Food Sci. 66: 204-209. 

  7. González-Barrio R, Trindade LM, Manzanares P, de Graaff LH, Tomás-Barberán FA, Espín JC. 2004. Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal α-ʟ-rhamnosidases. J. Agric. Food Chem. 52: 6136-6142. 

  8. Griffiths F, Lime B. 1959. Debittering of grapefruit products with naringinase. Food Technol. 13: 430-433. 

  9. Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB. 1999. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 31: 569-573. 

  10. Jung H, Kwak HK, Hwang KT. 2014. Antioxidant and anti-inflammatory activities of cyanidin-3-glucoside and cyanidin-3-rutinoside in hydrogen peroxide and lipopolysaccharide-treated RAW264.7 cells. Food Sci. Biotechnol. 23: 2053-2062. 

  11. Koseki T, Mese Y, Nishibori N, Masaki K, Fujii T, Handa T, et al. 2008. Characterization of an α-ʟ-rhamnosidase from Aspergillus kawachii and its gene. Appl. Microbiol. Biotechnol. 80: 1007-1013. 

  12. Kurosawa Y, Ikeda K, Egami F. 1973. α-L-Rhamnosidases of the liver of Turbo cornutus and Aspergillus niger. J. Biochem. 73: 31-37. 

  13. Lee I, Hung YH, Chou CC. 2007. Total phenolic and anthocyanin contents, as well as antioxidant activity, of black bean koji fermented by Aspergillus awamori under different culture conditions. Food Chem. 104: 936-942. 

  14. Manzanares P, Graaff LH, Visser J. 1997. Purification and characterization of an α-ʟ-rhamnosidase from Aspergillus niger. FEMS Microbiol. Lett. 157: 279-283. 

  15. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50: 519-525. 

  16. Pojer E, Mattivi F, Johnson D, Stockley CS. 2013. The case for anthocyanin consumption to promote human health: a review. Compr. Rev. Food Sci. Food Saf. 12: 483-508. 

  17. Puri M, Banerjee UC. 2000. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnol. Adv. 18: 207-217. 

  18. Puri M, Kalra S. 2005. Purification and characterization of naringinase from a newly isolated strain of Aspergillus niger 1344 for the transformation of flavonoids. World J. Microbiol. Biotechnol. 21: 753-758. 

  19. Romero C, Manjón A, Bastida J, Iborra J. 1985. A method for assaying the rhamnosidase activity of naringinase. Anal. Biochem. 149: 566-571. 

  20. Scalbert A, Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073S-2085S. 

  21. Takebe M. 2003. Arteriosclerosis-preventing material, immune-activating material, vertebrate that has eaten such materials, and eggs thereof. US Patent No. 20,030,185,853. 

  22. Talavéra S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, Rémésy C. 2005. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem. 53: 3902-3908. 

  23. Thomas D, Smythe C, Labbee M. 1958. Enzymatic hydrolysis of naringin, the bitter principle of grapefruit. J. Food Sci. 23: 591-598. 

  24. Tsuda T, Horio F, Osawa T. 1999. Absorption and metabolism of cyanidin 3-O-β-D-glucoside in rats. FEBS Lett. 449: 179-182. 

  25. Tsuda T, Horio F, Osawa T. 2002. Cyanidin 3-O-beta-D-glucoside suppresses nitric oxide production during a zymosan treatment in rats. J. Nutr. Sci. Vitaminol. 48: 305-310. 

  26. Tulio Jr AZ, Reese RN, Wyzgoski FJ, Rinaldi PL, Fu R, Scheerens JC, Miller AR. 2008. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J. Agric. Food Chem. 56: 1880-1888. 

  27. Wang SY, Lin HS. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 48: 140-146. 

  28. You HJ, Ahn HJ, Ji GE. 2010. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. J. Agric. Food Chem. 58: 10886-10892. 

  29. Wu X, Pittman HE, Mckay S, Prior RL. 2005. Aglycones and sugar moieties alter anthocyanin absorption and metabolism after berry consumption in weanling pigs. J. Nutr. 135: 2417-2424. 

  30. Yadav S, Yadav RS, Yadav KD. 2012. An α-ʟ-rhamnosidase from Aspergillus awamori MTCC-2879 and its role in debittering of orange juice. Int. J. Food Sci. Technol. 48: 927-933 

  31. Yadav V, Yadav PK, Yadav S, Yadav K. 2010. α-ʟ-Rhamnosidase: a review. Process Biochem. 45: 1226-1235. 

  32. Young NM, Johnston RA, Richards JC. 1989. Purification of the α-ʟ-rhamnosidase of Penicillium decumbens and characterisation of two glycopeptide components. Carbohydr. Res. 191: 53-62. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로