$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망
Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC 원문보기

대기 = Atmosphere, v.25 no.1, 2015년, pp.85 - 97  

허태경 (국립기상과학원) ,  부경온 (국립기상과학원) ,  심성보 (국립기상과학원) ,  홍진규 (연세대학교 대기과학과) ,  홍제우 (연세대학교 대기과학과)

Abstract AI-Helper 아이콘AI-Helper

This study is to investigate future changes in carbon cycle using the HadGEM2-Carbon Cycle simulations driven by $CO_2$ emissions. For experiment, global carbon budget is integrated from the two (8.5/2.6) representative concentration pathways (RCPs) for the period of 1860~2100 by Hadley C...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 후)산출 결과를">산출결과를 분석하였다. 또한 선행연구를 바탕으로 탄소수지 계산에 필요한 육상탄소해양탄소 교환량을 계산하고, 각변수들의 21세기 말 변화추이를 물리적 측면과 생지화학적 측면, 그리고 배출량에 따른 탄소순환의 변화를 고려하여 대기 중 농도변화에 미치는 영향에 관해 고찰하려 한다.
  • 이에">2013). 이에 본 연구에서는 미래 CO2 배출에 따른 육상, 해양의 탄소과정모의를 통하여 기후변화와 이에 수반되는 탄소순환에 대한 이해를 높이고자 하였다. 역학적 이에">2008). 이에 본 연구에서는 지구시스템 구성요소간의 탄소 교환량을 평가하고, 미래 탄소수지를 분석하고자 하였다. 이를 위하여 인위적인 CO2배출량을 처방하여 탄소순환이 결합된

    가설 설정

    • 4. (a) NEE (GtC yr-1) trajectories and (b) atmosphere-ocean CO2 flux (GtC yr-1), a positive atmosphere-land CO2 flux, and ocean CO2 flux represents a flux to the atmosphere from the atmosphere and ocean.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
IPCC 5차 보고서에 따르면 산업혁명 이후 인간 활동에 의해 대기 중으로 인위적으로 배출되는 온실가스는 1750년부터 2011년까지 약 얼마로 보고되었는가? 산업혁명 이후 인간 활동에 의해 대기 중으로 인위적으로 배출되는 온실가스는 꾸준히 증가하고 있다. IPCC 5차 보고서에 따르면 인간활동에 의한 CO2 배출량이 1750년부터 2011년 까지 약 555 85 GtC yr-1로 보고되었다(IPCC AR5., 2013).
기후 모형의 장점은 무엇인가? 전 지구적 규모의 탄소 수지 평가를 하고 탄소-기후상호 작용의 다양한 측면을 알아보는데 기후 모형은매우 유용하다. 특히 모형을 이용하면 육상생태계와 해양 생지화학 과정, 대기와의 교환과 같은 광범위의 탄소 순환의 탄소량 추정이 가능하다는 장점이 있다(Ito et al., 2008).
대기 중 CO2 농도 증가를 억제하는 역할에는 무엇이 있는가? 육상 및 해양 생태계는 광합성을 통하여 이산화탄소를 흡수하여, 대기 중 CO2 농도 증가를 억제하는 주요한 역할을 하고 있다. 미래 기후 변화에 미치는 탄소순환의 영향과 또한 탄소순환에서 대기 중에 배출된 탄소는 육상, 해양과의 교환과정을 통해 대기 중으로 축적되는데, 이러한 육상과 해양에서의 탄소 흡수량은 육상 생물권과 해양의 생태계가 기후 변화에 의해 영향을 받으므로 CO2 흡수능력 역시 변화됨을 주목해야 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. Anav, A., P. Friedlingstein, and M. Kidston, 2013: Evaluating the land and ocean conponents of the Global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 6801-6844. 

  2. Andres, R. J., J. S. Gregg, L. Losey, G. Marland, and T. A. Boden, 2011: Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B, 63, 309-327. 

  3. Bennington, V., G. A. McKinley, and S. Dutkiewicz, 2009: What does chlorophyll variability tell us about export and air-sea $CO_{2}$ flux variability in the North Atlantic?, Global Biogeochemical Cycles, 23, 11. 

  4. Boden, T. A., G. Marland, and R. J. Andres, 2010: Global, Regional, and National Fossil-Fuel $CO_{2}$ Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, doi:10.3334/CDIAC/00001V2010. 

  5. Boer and Arora, 2013: Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets, J. Climate, 26, 3326-3341. 

  6. Caesar, J., E. Palin, and S. Liddicoat, 2013: Response of the HadGEM2 earth system model to future greenhouse gas emissions pathways to the year 2300. J. Climate, 26, 3275-3285. 

  7. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 1051-1075. 

  8. Cox, P. M., 2001: Description of the TRIFFID dynamic global vegetation model. Hadley Centre Tech. Note, 24, 17. 

  9. Clarke, L., 2007: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations (Sub-report 2.1A of Synthesis and Assessment Product 2.1, US Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington DC, 2007). 

  10. Dezi, S., B. E. Medlyn, and G. Tonon, 2010: The effect of nitrogen deposition on forest carbon sequestration: a model-based analysis. Glob. Change Biol., 16, 1470-1486. 

  11. Doney, S. C., V. J. Fabry, and R. A. Feely, 2009: Ocean Acidification: The Other $CO_{2}$ Problem, Annu. Rev. Marine. Science, 1, 169-192. 

  12. Doney, S. C., L. Bopp, and M. C. Long, 2014: Historical and future trends in ocean climate and biogeochemistry. Oceangraphy, 27, 108-119. 

  13. Dixon, R. K., A. M. Solomon, and S. Brown, 1994: Carbon pools and flux of global forest ecosystems. Science, 263, 185-190. 

  14. Enting, I. G., T. M. L. Wigley, and M. Heimann, 2001: Future emissions and concentrations of carbon dioxide: Key Ocean/Atmosphere/Land analyses. CRISIRO, 31, 133 pp. 

  15. Feely, R. A., S. C. Doney, and S. R. Cooley, 2009: Ocean acidification. Oceangraphy, 22, 36-47. 

  16. Friedlingstein, P., 2006: Climate-carbon cycle feedback analysis: Results from the CMIP4 model intercomparison. J. Climate, 19, 3337-3353. 

  17. Feely, R. A., J. L. Dufresne, and P. M. Cox, 2003: How positive is the feedback between climate change and the carbon cycle?, Tellus, 55B, 692-700. 

  18. Friedlingstein, P., M. Meinshausen, and V. K. Arora, 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. American Meteorological Society, 26, 511-526. 

  19. Gim, B. M., T. S. Choi, and J. S. Lee, 2014: Effect assessment and derivation of ecological effect guideline on $CO_{2}$ - induced acidification for marine organisms. Journal of the Korean Society for Marine Environment and Energy, 17, 153-165. 

  20. Goldewijk, K. 2001: estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemstry, 15, 417-433. 

  21. Hijioka, Y., Y. Matsuoka, and H. Nishimoto, 2008: Global GHG emissions scenarios under GHG concentration stabilization targets. J. Glob. Environ. Eng., 13, 97-108. 

  22. Houghton, R. A. 2008: Carbon Flux to the Atmosphere from Land-Use Changes: 1850-2005, in: TRENDS: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, 2008. 

  23. IPCC, 2007: Climate Change 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

  24. IPCC, 2013: Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

  25. Ito, A., 2008. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using Asia Flux data. Agricultural and Forest Meteorology, 148, 738-747. 

  26. Ito, A., 2010. Changing ecophysiological processes and carbon budget in East Asian ecosystems under nearfuture changes in climate: implications for long-term monitoring from a process-based model. Journal of Plant Research, 123, 577-588. 

  27. Jang, J. H., J. K. Hong, and Y. H. Ryun, 2010: A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration. Korea J. Agric. Forest Meteor., 12, 107-121. 

  28. Jung, M., M. Reichstein, and P. Ciais, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-964. 

  29. Jones, C. D., 2004: Climate-Land Carbon Cycle Simulation of the 20th century: Assessment of HadCM3LC C4MIP Phase 1 experiment. Hadley centre technical note 59. 

  30. Jones, C. D., J. K. Hughes, and N. Bellouin, 2011: The Had- GEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543-570. 

  31. Jones, C. D., E. Robertson, and V. Arora, 2013: Twenty-firstcentury compatible $CO_{2}$ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Climate, 26, 4398-4413. 

  32. Keeling, C. D., 2001: S.I.O. Exchanges of Atmospheric $CO_{2}$ and 13 $CO_{2}$ with the Terrestrial Biosphere and Oceans from 1978 to 2000.I. Global Aspects Reference Series No. 00-21 (Scripps Institution of Oceangraphy, University of California, San Diego, 2001). 

  33. Keeling, C. D., T. P. Whorf, M. Wahlen, and J. Plichtt, 1995: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666-670. 

  34. Keeling, C. D., R. B. Bacastow, and A. E. Bainbridge, 1976: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538-551. 

  35. Kim, H. T., B. E.Moon, and E. G. Choi, 2014: An analysis of local quantity of carbon absorption, fixation and emission by using GIS. J. of KORRA, 22, 40-48. 

  36. Kim, J. W., H. M. Kim, and C. H. Cho, 2012 : Application of carbon tracking system based on ensemble kalman filter on the diagnosis of carbon cycle in asia atmosphere. Korean Meteorological Society, 22, 415-427. 

  37. Lee, C., K. O. Boo, and J. K. Hong, 2014:Future changes in global terrestrial carbon cycle under RCP scenarios, Atmosphere., 24, 303-315 (in Korean with English abstract). 

  38. Lee, N. Y., 2010 : Carbon cycle in terrestrial ecosystems - Net Ecosystem Production (NEP) in a forest. Journal of National Park Research, 1, 163-168. 

  39. Lee, J. Y., D. K. Kim, and H. Y. Won, 2013: Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park. Korean J. Environ. EcoL, 27, 561-570. 

  40. Lee, J. H., J. S.Yi, and Y. M. Chun, 2013: Discussion of soil respiration for understanding ecosystem carbon cycle in Korea, KJEE, 46, 310-318. 

  41. Le Quere, C., R. J. Andres, and T. Boden, 2013: The global carbon budget 1959-2011. Earth Syst. Sci. Data, 5, 165-185. 

  42. Le Quere, C., G. P. Peters, and R. J. Andres, 2014: Global carbon budget 2013. Earth Syst. Sci. Data, 6, 235-263. 

  43. Liddicoat, S., C. Jones, and E. Robertson, 2013: $CO_{2}$ emissions determined by HadGEM2-ES to be compatible with the representative concentration pathway scenarios and their extensions. J. Climate, 26, 4381-4397. 

  44. Lim, J. H., J. H. Shin, and G. T. Kim, 2003: KoFlux 2002 Synthesis; Forest stand structure, site characteristics and carbon budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology, 5, 101-109. 

  45. Martin, G. M., N. Bellouin, and W. J. Collins, 2011: The HadGEM2 family of met office unified model climate configurations. Geosci. Model Dev., 4, 723-757. 

  46. Moss, R. H., J. A. Edmonds, and K. A. Hibbard, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-757. 

  47. Orr, J. C., V. J. Fabry, and O. Aumont, 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on marine calcifying organisms. Nature, 437, 681-686. 

  48. Palmer, J. R. and I. J. Totterdell, 2001: Production and export in a global ocean ecosystem model. Deep Sea Res., Pt. I, 48, 1169-1198. 

  49. Park, G. H., 2010: Variability of global net sea-air $CO_{2}$ fluxes over the last three decades using empirical relationships. Tellus, 62B, 352-368. 

  50. Piao S., P. Ciais, and P. Friedlingstein, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 23, GB4026. 

  51. Pyo, J. H., S. U. Kim, and H. T. Mun, 2003: A Study on the carbon budget in pinus koreans is plantation. Journal of Ecology and Environment, 26, 129-134. 

  52. Revelle, R. and H. Suess, 1957: Carbon Dioxide Exchange between atmosphere and ocean and the question of an increase of atmospheric $CO_{2}$ during the past decades. TELUS, 9, 18-27. 

  53. Riahi, K., S. Rao, and V. Krey, 2011: RCP 8.5 - A scenario of comparatively high greenhouse gas emission. J. Climate Change, 109, 33-57. 

  54. Sabine, C. L., and R. A. Feely, 2007: The oceanic sink for carbon dioxide. Greenhouse Gas Sinks., Eds., CABI, 31-49. 

  55. Sarmiento, J. L., M. Gloor, and N. Gruber, 2010: Trends and regional distributions of land and ocean carbon sinks. Biogeosciences, 7, 2351-2367. 

  56. Shevliakova, E., S. W. Pacala, and S. Malyshev, 2009: Carbon cycling under 300 years of land use change : Importance of the secondary vegetation sink. Global Biogeochemical Cycles, 23, GB2022. 

  57. Sim, C. S., 2010: Sources/Sinks Analysis with Satellite Sensing for Exploring Global Atmospheric $CO_{2}$ Distributions, Korea Environment Institue. 

  58. Takahashi, T., J. Olafsson, and G. John, 1993: Seasonal variation of $CO_{2}$ and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochemical Cycles, 7, 843-878. 

  59. Takahashi, T., S. C. Sutherland, and R. Wanninkhof., 2009: Climatological mean and decadal change in surface ocean p $CO_{2}$ , and net sea-air $CO_{2}$ flux over the global oceans, Deep-Sea Research II, 56, 554-577. 

  60. Taylor, K. E., J. R. Stouffer, and G. A. Meehl, 2012, An overview of CMIP5 and the experiment design, American Meteological Society, 2012, April, 485-498, DOI:10.1175/BAMS-D-11-00094.1 

  61. Van Vuuren, D. P., P. Lucas, and H. Hilderink, 2007: Downscaling drivers of global environmental change. Enabling use of global SRES scenarios at the national and grid levels. Glob. Environ. Change, 17, 114-130. 

  62. Wannikhof, R., G.-H. Park, and T. Takahashi, 2013: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 10, 1983-2000. 

  63. Yoo, S. j., W.-K. Lee, and Y. H. Son, 2012: Estimation of vegetation carbon budget in South Korea using ecosystem model and spatio-temporal environmental information. Korean Journal of Remote Sensing, 28, 145-157. 

  64. Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual $CO_{2}$ variability. Global Biogeochemical Cycles, 19, GB1016, pp. 15. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로