$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

염분변화가 대왕바리, Epinephelus lanceolatus의 산소소비에 미치는 영향
Effects of Low Salinity acclimation on Oxygen Consumption in Giant Grouper, Epinephelus lanceolatus 원문보기

水産海洋敎育硏究 = Journal of fisheries and marine sciences education, v.27 no.2 = no.74, 2015년, pp.526 - 536  

김문진 (씨-라이프 부산아쿠아리움) ,  임한규 (국립목포대학교) ,  정민환 (국립수산과학원)

초록
AI-Helper 아이콘AI-Helper

대왕바리, Epinephelus lanceolatus의 담수순화 방법에 따른 산소소비 경향을 조사하였다. 염분 변화 조건은 대조구인 35 psu (Exp. I) 외에 단계적 염분변화 조건인 Exp. II($35{\rightarrow}20{\rightarrow}10{\rightarrow}0$ psu)과 Exp. III ($35{\rightarrow}10{\rightarrow}0$ psu) 그리고 급격한 염분변화 조건인 Exp. IV ($35{\rightarrow}0$ psu)로 하였다. 염분 저하 방법별로 산소소비량을 측정한 결과, 수온 $27^{\circ}C$에서 실험어의 평균 산소소비량은 Exp. I에서 $106.9{\pm}0.7mg$ $O_2/kg/h$였다. Exp. II에서는 염분이 $35{\rightarrow}20{\rightarrow}10{\rightarrow}0$ psu로 낮아지면서 각각 $108.1{\pm}2.1$, $99.6{\pm}2.9$, $74.6{\pm}0.9$$62.7{\pm}1.0mg$ $O_2/kg/h$, Exp. III에서는 각각 $106.5{\pm}1.3$, $77.0{\pm}1.2$$64.7{\pm}1.2mg$ $O_2/kg/h$로 감소하였다. Exp. IV 역시 산소소비량은 35 psu의 $109.0{\pm}0.9mg$ $O_2/kg/h$로부터 0 psu의 $71.6{\pm}2.0mg$ $O_2/kg/h$로 감소하는 경향을 보였다. 대왕바리는 모든 실험 조건에서 암기 보다 명기에 많은 산소소비량을 보여, 주행성 어종인 것으로 추정되나, 명기와 암기의 산소소비량은 큰 차이를 보이지 않았다. 이상의 결과를 종합해 볼 때, 대왕바리 치어는 염분 저하 방법별 산소소비량에서 서로 차이를 보이지 않아 저염분 순화에 있어 생리적 문제는 발생하지 않았으며, 실험과정 중 폐사한 개체도 없었다. 따라서 대왕바리는 염분변화에 매우 강한 광염성 어종이며, 담수환경에 쉽게 적응할 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Changes of oxygen consumption in juvenile giant grouper, Epinephelus lanceolatus were investigated in order to find out the physiological responses associated with freshwater and low salinities acclimation. Salinity changes in this experiment were set as follows; 35 psu (Exp. I) as control, decrease...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 한국의 새로운 양식 대상종으로 잠재적 가능성이 있는 대왕바리의 염분변화에 따른 산소소비 특성을 파악하여, 이 어종의 사육 시 적절한 산소공급량과 대사활성에 관한 자료를 얻고자 수행되었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
어류의 산소소비가 달라지는 요인은 무엇이 있는가? 특히 제한된 공간속의 어류는 빈산소 환경에서 호흡곤란을 일으켜 죽는 경우가 발생하기 때문에 어류 양식장에서 산소공급은 중요한 관리사항 중 하나이다. 어류의 산소소비는 수온(Brett and Glass, 1973; Wi and Chang, 1976), 염분(Rao, 1971; Forsberg, 1994), 광주기(Withey and Saunders, 1973), 어체크기(Brett and Glass, 1973), 사료공급량(Brett and Groves, 1979) 및 스트레스(Smart, 1981; Barton and Schreck, 1987) 등 여러 가지 요인에 의해 달라지는 것으로 알려져 있다. 용존산소는 양식 어류의 못이나 탱크에서 생산량을 결정하는 데 매우 중요한 요인 중 하나이다(Erez et al.
용존산소의 특징은 무엇인가? , 1991). 더욱이 용존산소는 어류양식에서 수용밀도를 결정(Kawamoto, 1977)하거나, 활어수송(Wi and Chang, 1976) 및 사료요구량 산정(Buentello et al., 2000)에 변수가 되고 있다.
대왕바리는 염분변화에 매우 강한 광염성 어종이며, 담수환경에 쉽게 적응할 수 있을 것으로 판단되는 이유가 무엇인가? 대왕바리는 모든 실험 조건에서 암기 보다 명기에 많은 산소소비량을 보여, 주행성 어종인 것으로 추정되나, 명기와 암기의 산소소비량은 큰 차이를 보이지 않았다. 이상의 결과를 종합해 볼 때, 대왕바리 치어는 염분 저하 방법별 산소소비량에서 서로 차이를 보이지 않아 저염분 순화에 있어 생리적 문제는 발생하지 않았으며, 실험과정 중 폐사한 개체도 없었다. 따라서 대왕바리는 염분변화에 매우 강한 광염성 어종이며, 담수환경에 쉽게 적응할 수 있을 것으로 판단된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (46)

  1. Barton B. A. & Schreck C. B.(1987). Metabolic cost of acute physical stress in juvenile steelhead, Trans Am Fish Soc 116, 257-263. 

  2. Boeuf G. & Payan P.(2001). How should salinity influence fish growth, Comp Biochem Physiol C 130, 411-423. 

  3. Brett J. R. & Glass N. R.(1973). Oxygen consumption and critical swimming speeds of sockeye salmon (Oncorhynchus nerka) in relation to size and temperature, J Fish Res Bd Can 30, 379-387. 

  4. Brett J. R. & Groves TDD.(1979). Physiological energetics, Academic Press. New York. 279-352. 

  5. Buentello J. A..Neill WH & Gatlin D. B.(2000). Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus), Aquaculture 182, 339-352. 

  6. Byun, S. G..Jeong M. H..Lee J. H..Lee B. I.. Ku H. D..Park S. U..Kim Y. C. & Chang Y. J.(2008), Diel Rhythm of Oxygen Consumption of the Starry Flounder Platichthys stellatus by Water Temperature, J. Kor. Fish. Soc. 41(2), 113-118. 

  7. Chang Y. J..Jeong M. H..Min B. H..Neill W. H. & Fontaine L. P.(2005). Effects of photoperiod, temperature, and fish size on oxygen consumption in the black porgy (Acanthopagrus schlegeli), J Fish Sci Tech 8, 142-150. 

  8. Chatelier A..Mckenzie D. J. & Claireaux G.(2005). Effects of changes in water salinity upon exercise and cardiac performance in the European sea bass (Dicentrarchus labrax), Mar Biol 147, 855-862. 

  9. Claireaux G. & Lagardere J. P.(1999). Influence of temperature, oxygen and salinity on the metabolism of the European sea bass, J Sea Res 42, 157-168. 

  10. Dalla Valle A. Z..Rivas-Diaz R. & Claireaux G.(2003). Opercular differential pressure as a predictor of metabolic oxygen demand in the starry flounder, J Fish Biol 63, 1578-1588. 

  11. Erez J..Krom M. D. & Neuwirth T.(1990). Daily oxygen variations in marine fish ponds, Elat, Israel, Aquaculture 84, 289-305. 

  12. Fanta-Feofiloff E.Eiras DRB.Boscardim AT & Lacerda-Krambeck M (1986). Effect of salinity on the behavior and oxygen consumption of Mugil curema (Pisces, Mugilidae), Physiol and Behav 36, 1029-1034. 

  13. FAO(1993). FAO species catalogue Vol. 16. Groupers of the world. FAO Rome, 1-10. 

  14. Fontainhas-Fernandes A..Russell-Pinto F..Gomes E..Reis-Henriques M. A. & Coimbra J.(2001). The effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater, Fish Physiol Biochem 23, 307-316. 

  15. Forsberg O. I.(1994). Modelling oxygen consumption rates of post-smolt atlantic salmon in commercial-scale land-based farms, Aquacult Int 2, 180-196. 

  16. Froese, R. & D. Pauly(2014). FishBase. World Wide Web electronic publication, (version 09/2014). 

  17. Itazawa Y. & Hanyu I.(1991). Fish Physiology. Koseisha-Koseikaku, Tokyo, Japan. 621. 

  18. Iwama G. K..Takemura A. & Takano K.(1997). Oxygen consumption rates of tilapia in fresh water, sea water and hypersaline sea water, J Fish Biol 51, 886-894. 

  19. Jeong M. H..Byun S. G..Lim H. K..Min B. H..Kim Y. S. & Chang Y. J.(2009). Effects of water temperature on oxygen consumption in starry flounder Platichthys stellatus reared in seawater and freshwater, Korean J Environ Biol 27, 285-291. 

  20. Jeong M. H..Kim Y. S..Min B. H. & Chang Y. J.(2007). Effect of fish number in respiratory chamber on routine oxygen consumption of black porgy, Acanthopagrus schlegeli reared in seawater or freshwater, J Aquacult 20, 121-126. 

  21. Jorgensen E. H..Jobling M. & Christiansen J.(1991). Metabolic requirements of arctic charr, Salvelinus alpinus (L), under hatchery conditions, Aquacult Fish Manag 22, 377-378. 

  22. Kang J. C..Chin P..Lee J. S..Shin Y. K. & Cho K. S.(2000). Effects of salinty on survival, growth and oxygen consumption rates of the juvenile gobiid, Favonigobius gymnachen, J Korean Fish Soc 33, 408-412. 

  23. Kawamoto N.(1977). Fish Physiology. Koseisha -Koseikaku, Tokyo, Japan. 605. 

  24. Kim W. S..Huh H. T..Lee J. H. & Koh C. H.(1998). Effects of sudden changes on salinity on endogenous rhythm of the spotted sea bass Lateolabrax sp, Mar Biol 131, 219-225. 

  25. Konstantinov A. S & Martynova V. V.(1993). Effect of salinity fluctuations on energetics of juvenile fish, J Ichthyol 33, 161-166. 

  26. Lasserre P..Boeuf G. & Harache Y.(1978). Osmotic adaptation of Oncorhynchus kisutch Walbaum. I. Seasonal variations of gill Na+-K+ ATPase activity in coho salmon, O+-age and yearling, reared in freshwater, Aquaculture 14, 365-382. 

  27. Lucas M. C. & Priede I. G.(1992). Utilization of metabolic scope in relation to feeding and activity by individual and grouped zebrafish, Brachydanio rerio (Hamilton-Buchanan), J Fish Biol 41, 175-190. 

  28. Martin T. J.(1990). Osmoregulatory in three species of Ambassidae (Osteichthyes: Perciformes) from estuaries in Natal, S Afr J Zool 25, 229-234. 

  29. Min B. H..Kim B. K..Hur J. W..Bang I. C.. Byun S. K..Choi C. Y. & Chang Y. J.(2003). Physiological reponses during freshwater acclimation of seawater-cultured black porgy (Acanthopagrus schlegeli), Korean J Ichthyol 15, 265-275. 

  30. Morgan J. D. & Iwama G. K.(1991). Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha), Can J Fish Aquat Sci 48, 2083-2094. 

  31. Morgan J. D. & Iwama G. K.(1998). Salinity effects on oxygen consumption, gill Na+/K+-ATPase and ion regulation in juvenile coho salmon, J Fish Biol 53, 1110-1119. 

  32. Myoung, J. G..Kang, C. .B..Yoo, J. M..Lee, E. K..Kim, S..Jeong, C. H. & Kim, B. I.(2013). First record of the giant grouper Epinephelus lanceolatus (Perciformes: Serranidae: Epinephelinae) from Jeju Island, South Korea. Fish. Aquat. Sci. 16; 49-52. 

  33. Parker F. R.(1973). Reduced metabolic rates in fishes as a result of induced schooling, Trans Am Fish Soc 102, 125-130. 

  34. Randall D. J.(1982). The control of respiration and circulation in fish during exercise and hypoxia, J Exp Biol 100, 275-285. 

  35. Rao M. M.(1971). Influence of activity and salinity on the weight dependent oxygen consumption of the rainbow trout Salmo gairdneri, Mar Biol 8, 205-212. 

  36. Ross R. M..Backman T. W. H. & Limburg K. E.(1992). Group-size-mediated metabolic rate reduction in American shad, Trans Am Fish Soc 121, 385-390. 

  37. Ruer P. M..Cech J. J. & Doroshov S. I.(1987). Routine metabolism of the white sturgeon, Acipenser transmontanus: effect of population density and hypoxia, Aquaculture 62, 45-52. 

  38. Singley J. A. & Chavin W.(1971). Cortisol levels of normal goldfish, Carassius auratus L., and response to osmotic change, Am Zool 11, 653. 

  39. Smart G.(1981). Aspects of water quality producing stress in intensive fish farming. In: Stress and Fish (ed. by A.D. Pickering), Academic Press. London. 277-293. 

  40. Spencer W. P.(1939). Diurnal activity rhythms in freshwater fishes, Ohio T Sci 39, 119-132. 

  41. Spoor W. A.(1946). A quantitative study of the relationship between the activity and oxygen consumption of the goldfish, and its application to the measurement of respiratory metabolism in fishes, Biol Bull 91, 312-325. 

  42. Steffensen J. F..Lomholt P. L. & Johansen K.(1981). The relative importance of skin oxygen uptake in the naturally buried plaice, Pleuronectes platessa, exposed to graded hypoxia, Respir Physiol 44, 268-275. 

  43. Umezawa S. I..Adachi S. & Taneda K.(1983). Group effect on oxygen consumption of the ayu (Plecoglossus altivelis) in relation to growth stage, Japan J Ichthyol 30, 261-267. 

  44. Wi J. H. & Chang Y. J.(1976). A basic study on transport of live fish (I), Bull Fish Res Dev Agency Korea 15, 91-108. 

  45. Withey K. G. & Saunders R. L.(1973). Effect of reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt atlantic salmon (Salmo salar), J Fish Res Bd Can 30, 1898-1900. 

  46. Yang, S. G..Ji S. C..Moon T. S..Kim K. M.& Jeong MH (2013), Effects of Water Temperature, Photoperiod and Population Density on Oxygen Consumption in the Longtooth Groper Epinephelus bruneus, J. Kor. Fish. Sci. 46(2), 195-200. 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로