$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

iPSC technology-Powerful hand for disease modeling and therapeutic screen 원문보기

BMB reports, v.48 no.5, 2015년, pp.256 - 265  

Kim, Changsung (Department of Bioscience and Biotechnology, Sejong University)

Abstract AI-Helper 아이콘AI-Helper

Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screen...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • is one of the hallmark studies for genetically unidentified patient cases using iPSC disease modeling. In their study, they combined the data from a child-onset SCZD patient (6 year old) and 3 adult-onset SCZD patients (32). They found that genetically unknown SCZD patient samples had similar pathological signature.
본문요약 정보가 도움이 되었나요?

참고문헌 (78)

  1. 1 Rajamohan D Matsa E Kalra S et al Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays (2013) 35 281 298 10.1002/bies.201200053 22886688 

  2. 2 Rubin LL Haston KM Stem cell biology and drug discovery. BMC Biol (2011) 9 42 10.1186/1741-7007-9-42 21649940 

  3. 3 Seok J Warren HS Cuenca AG et al Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A (2013) 110 3507 3512 10.1073/pnas.1222878110 23401516 

  4. 4 Munos B Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov (2009) 8 959 968 10.1038/nrd2961 19949401 

  5. 5 Park IH Arora N Huo H et al Disease-specific induced pluripotent stem cells. Cell (2008) 134 877 886 10.1016/j.cell.2008.07.041 18691744 

  6. 6 Takahashi K Tanabe K Ohnuki M et al Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell (2007) 131 861 872 10.1016/j.cell.2007.11.019 18035408 

  7. 7 Takahashi K Yamanaka S Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell (2006) 126 663 676 10.1016/j.cell.2006.07.024 16904174 

  8. 8 Ban H Nishishita N Fusaki N et al Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A (2011) 108 14234 14239 10.1073/pnas.1103509108 21821793 

  9. 9 Kim C Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res (2014) 49 7 14 10.5045/br.2014.49.1.7 24724061 

  10. 10 Mercola M Ruiz-Lozano P Schneider MD Cardiac muscle regeneration: lessons from development. Genes Dev (2011) 25 299 309 10.1101/gad.2018411 21325131 

  11. 11 Nascone N Mercola M An inductive role for the endoderm in Xenopus cardiogenesis. Development (1995) 121 515 523 7768189 

  12. 12 Kim C Majdi M Xia P et al Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev (2010) 19 783 795 10.1089/scd.2009.0349 20001453 

  13. 13 Filipczyk AA Passier R Rochat A et al Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci (2007) 64 704 718 10.1007/s00018-007-6523-2 17380311 

  14. 14 Yang L Soonpaa MH Adler ED et al Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature (2008) 453 524 528 10.1038/nature06894 18432194 

  15. 15 Lian X Hsiao C Wilson G et al Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A (2012) 109 E1848 1857 10.1073/pnas.1200250109 22645348 

  16. 16 Moretti A Bellin M Welling A et al Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med (2010) 363 1397 1409 10.1056/NEJMoa0908679 20660394 

  17. 17 Itzhaki I Maizels L Huber I et al Modelling the long QT syndrome with induced pluripotent stem cells. Nature (2011) 471 225 229 10.1038/nature09747 21240260 

  18. 18 Yazawa M Hsueh B Jia X et al Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature (2011) 471 230 234 10.1038/nature09855 21307850 

  19. 19 Ruan Y Liu N Napolitano C Priori SG Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circ Arrhythm Electrophysiol (2008) 1 290 297 10.1161/CIRCEP.108.795617 19808421 

  20. 20 Terrenoire C Wang K Tung KW et al Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol (2013) 141 61 72 10.1085/jgp.201210899 23277474 

  21. 21 Moreno JD Clancy CE Pathophysiology of the cardiac late Na current and its potential as a drug target. J Mol Cell Cardiol (2012) 52 608 619 10.1016/j.yjmcc.2011.12.003 22198344 

  22. 22 Carvajal-Vergara X Sevilla A D'Souza SL et al Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature (2010) 465 808 812 10.1038/nature09005 20535210 

  23. 23 Lan F Lee AS Liang P et al Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell (2013) 12 101 113 10.1016/j.stem.2012.10.010 23290139 

  24. 24 Tabar V Studer L Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet (2014) 15 82 92 10.1038/nrg3563 24434846 

  25. 25 Zhang SC Wernig M Duncan ID Brüstle O Thomson JA In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol (2001) 19 1129 1133 10.1038/nbt1201-1129 11731781 

  26. 26 Reubinoff BE Itsykson P Turetsky T et al Neural progenitors from human embryonic stem cells. Nat Biotechnol (2001) 19 1134 1140 10.1038/nbt1201-1134 11731782 

  27. 27 Chambers SM Fasano CA Papapetrou EP Tomishima M Sadelain M Studer L Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol (2009) 27 275 280 10.1038/nbt.1529 19252484 

  28. 28 Kondo T Asai M Tsukita K et al Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell (2013) 12 487 496 10.1016/j.stem.2013.01.009 23434393 

  29. 29 Yagi T Ito D Okada Y et al Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet (2011) 20 4530 4539 10.1093/hmg/ddr394 21900357 

  30. 30 Wang H Doering LC Induced pluripotent stem cells to model and treat neurogenetic disorders. Neural Plast (2012) 2012 346053 22888453 

  31. 31 Israel MA Yuan SH Bardy C et al Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature (2012) 482 216 220 22278060 

  32. 32 Brennand KJ Simone A Jou J et al Modelling schizophrenia using human induced pluripotent stem cells. Nature (2011) 473 221 225 10.1038/nature09915 21490598 

  33. 33 Ryan SD Dolatabadi N Chan SF et al Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell (2013) 155 1351 1364 10.1016/j.cell.2013.11.009 24290359 

  34. 34 Kaye JA Finkbeiner S Modeling Huntington's disease with induced pluripotent stem cells. Mol Cell Neurosci (2013) 56 50 64 10.1016/j.mcn.2013.02.005 23459227 

  35. 35 Jeon I Lee N Li JY et al Neuronal properties, in vivo effects, and pathology of a Huntington's disease patient-derived induced pluripotent stem cells. Stem Cells (2012) 30 2054 2062 10.1002/stem.1135 22628015 

  36. 36 Zhang K Yi F Liu GH Izpisua Belmonte JC Huntington's disease: dancing in a dish. Cell Res (2012) 22 1627 1630 10.1038/cr.2012.116 22868272 

  37. 37 Williams EC Zhong X Mohamed A et al Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet (2014) 23 2968 2980 10.1093/hmg/ddu008 24419315 

  38. 38 Jeon I Choi C Lee N et al In Vivo Roles of a Patient-Derived Induced Pluripotent Stem Cell Line (HD72-iPSC) in the YAC128 Model of Huntington's Disease. Int J Stem Cells (2014) 7 43 47 10.15283/ijsc.2014.7.1.43 24921027 

  39. 39 Yang J Cai J Zhang Y et al Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem (2010) 285 40303 40311 10.1074/jbc.M110.183392 20956530 

  40. 40 Dajani R Koo SE Sullivan GJ Park IH Investigation of Rett syndrome using pluripotent stem cells. J Cell Biochem (2013) 114 2446 2453 10.1002/jcb.24597 23744605 

  41. 41 Ananiev G Williams EC Li H Chang Q Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One (2011) 6 e25255 10.1371/journal.pone.0025255 21966470 

  42. 42 Schöndorf DC Aureli M McAllister FE et al iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun (2014) 5 4028 24905578 

  43. 43 Chamberlain SJ Chen PF Ng KY et al Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A (2010) 107 17688 17673 10.1073/pnas.1004487107 

  44. 44 Sareen D Ebert AD Heins BM McGivern JV Ornelas L Svendsen CN Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS One (2012) 7 e39113 10.1371/journal.pone.0039113 22723941 

  45. 45 Egawa N Inoue H [ALS disease modeling and drug screening using patient-specific iPS cells]. Rinsho Shinkeigaku (2013) 53 1020 1022 10.5692/clinicalneurol.53.1020 24291866 

  46. 46 Corti S Nizzardo M Simone C et al Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med (2012) 4 165ra162 10.1126/scitranslmed.3004108 

  47. 47 Ross CA Akimov SS Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet (2014) 23 R17 26 10.1093/hmg/ddu204 24824217 

  48. 48 Kiskinis E Sandoe J Williams LA et al Pathways Disrupted in Human ALS Motor Neurons Identified through Genetic Correction of Mutant SOD1. Cell Stem Cell (2014) 14 781 795 10.1016/j.stem.2014.03.004 24704492 

  49. 49 Chen H Qian K Du Z et al Modeling ALS with iPSCs Reveals that Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons. Cell Stem Cell (2014) 14 796 809 10.1016/j.stem.2014.02.004 24704493 

  50. 50 Wolstencroft EC Mattis V Bajer AA Young PJ Lorson CL A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet (2005) 14 1199 1210 10.1093/hmg/ddi131 15790598 

  51. 51 Makhortova NR Hayhurst M Cerqueira A A screen for regulators of survival of motor neuron protein levels. Nat Chem Biol (2011) 7 544 552 10.1038/nchembio.595 21685895 

  52. 52 Guo X Disatnik MH Monbureau M Shamloo M Mochly-Rosen D Qi X Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J Clin Invest (2013) 123 5371 5388 10.1172/JCI70911 24231356 

  53. 53 Charbord J Poydenot P Bonnefond C et al High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells (2013) 31 1816 1828 10.1002/stem.1430 23712629 

  54. 54 Miller JD Ganat YM Kishinevsky S et al Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell (2013) 13 691 705 10.1016/j.stem.2013.11.006 24315443 

  55. 55 Kim C Wong J Wen J et al Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature (2013) 494 105 110 10.1038/nature11799 23354045 

  56. 56 Reinhardt P Schmid B Burbulla LF et al Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell (2013) 12 354 367 10.1016/j.stem.2013.01.008 23472874 

  57. 57 Lopaschuk GD Jaswal JS Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol (2010) 56 130 140 10.1097/FJC.0b013e3181e74a14 20505524 

  58. 58 Djouadi F Lecarpentier Y Hébert JL Charron P Bastin J Coirault C A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res (2009) 84 83 90 10.1093/cvr/cvp183 19497962 

  59. 59 Eroshenko N Ramachandran R Yadavalli VK Rao RR Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng (2013) 7 7 10.1186/1754-1611-7-7 23517522 

  60. 60 Engler AJ Carag-Krieger C Johnson CP et al Embryonic cardiomyocytes beat best on a matrix with heartlike elasticity: scar-like rigidity inhibits beating. J Cell Sci (2008) 121 3794 3802 10.1242/jcs.029678 18957515 

  61. 61 Galie PA Khalid N Carnahan KE Westfall MV Stegemann JP Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol (2013) 22 219 227 10.1016/j.carpath.2012.10.003 23266222 

  62. 62 Choi SM Kim Y Shim JS et al Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells Hepatology (2013) 57 2458 2468 10.1002/hep.26237 23325555 

  63. 63 Hidvegi T Ewing M Hale P et al An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science (2010) 329 229 232 10.1126/science.1190354 20522742 

  64. 64 Höing S Rudhard Y Reinhardt P et al Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell (2012) 11 620 632 10.1016/j.stem.2012.07.005 23064101 

  65. 65 Yang YM Gupta SK Kim KJ et al A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell (2013) 12 713 726 10.1016/j.stem.2013.04.003 23602540 

  66. 66 Fermini B Fossa AA The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov (2003) 2 439 447 10.1038/nrd1108 12776219 

  67. 67 Zeevi-Levin N Itskovitz-Eldor J Binah O Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacol Ther (2012) 134 180 188 10.1016/j.pharmthera.2012.01.005 22269465 

  68. 68 De Bruin ML Pettersson M Meyboom RH Hoes AW Leufkens HG Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death. Eur Heart J (2005) 26 590 597 10.1093/eurheartj/ehi092 15637086 

  69. 69 Liang P Lan F Lee AS et al Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation (2013) 127 1677 1691 10.1161/CIRCULATIONAHA.113.001883 23519760 

  70. 70 Grant AO Cardiac ion channels. Circ Arrhythm Electrophysiol (2009) 2 185 194 10.1161/CIRCEP.108.789081 19808464 

  71. 71 Knollmann BC Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model? Circ Res (2013) 112 969 976 discussion 976 10.1161/CIRCRESAHA.112.300567 23569106 

  72. 72 Musunuru K Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech (2013) 6 896 904 10.1242/dmm.012054 23751357 

  73. 73 Kim H Kim JS A guide to genome engineering with programmable nucleases. Nat Rev Genet (2014) 15 321 334 10.1038/nrg3686 24690881 

  74. 74 Maeder ML Linder SJ Cascio VM Fu Y Ho QH Joung JK CRISPR RNA-guided activation of endogenous human genes. Nat Methods (2013) 10 977 979 10.1038/nmeth.2598 23892898 

  75. 75 Qiang L Fujita R Abeliovich A Remodeling neurodegeneration: somatic cell reprogramming-based models of adult neurological disorders. Neuron (2013) 78 957 969 10.1016/j.neuron.2013.06.002 23791192 

  76. 76 Wada R Muraoka N Inagawa K et al Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A (2013) 110 12667 12672 10.1073/pnas.1304053110 23861494 

  77. 77 Fu JD Stone NR Liu L et al Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Reports (2013) 1 235 247 10.1016/j.stemcr.2013.07.005 24319660 

  78. 78 Cerrone M Lin X Zhang M et al Missense mutations in plakophilin-2 cause sodium current deficit and associate with a brugada syndrome phenotype. Circulation (2014) 129 1092 1103 10.1161/CIRCULATIONAHA.113.003077 24352520 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로