$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Human Cord Blood-Derived CD133 + /C-Kit + /Lin − Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells 원문보기

Stem cells international, v.2016, 2016년, pp.7162160 -   

Cardenas, Carlos (Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA) ,  Kwon, Ja-Young (Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea) ,  Maeng, Yong-Sun (Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs o...

참고문헌 (44)

  1. 1 Choumerianou D. M. Dimitriou H. Kalmanti M. Stem cells: promises versus limitations Tissue Engineering Part B: Reviews 2008 14 1 53 60 10.1089/teb.2007.0216 2-s2.0-44949195936 18454634 

  2. 2 Cho M. S. Lee Y.-E. Kim J. Y. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells Proceedings of the National Academy of Sciences of the United States of America 2008 105 9 3392 3397 10.1073/pnas.0712359105 2-s2.0-42149107420 18305158 

  3. 3 Dambrot C. Passier R. Atsma D. Mummery C. L. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models Biochemical Journal 2011 434 1 25 35 10.1042/BJ20101707 2-s2.0-79251554060 21269276 21269276 

  4. 4 Kehat I. Kenyagin-Karsenti D. Snir M. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes Journal of Clinical Investigation 2001 108 3 407 414 10.1172/JCI200112131 2-s2.0-0034904645 11489934 11489934 

  5. 5 Lavon N. Benvenisty N. Study of hepatocyte differentiation using embryonic stem cells Journal of Cellular Biochemistry 2005 96 6 1193 1202 10.1002/jcb.20590 2-s2.0-27944455549 16211581 16211581 

  6. 6 Leeper N. J. Hunter A. L. Cooke J. P. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells Circulation 2010 122 5 517 526 10.1161/circulationaha.109.881441 2-s2.0-77955380692 20679581 

  7. 7 Nizzardo M. Simone C. Falcone M. Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells Cellular and Molecular Life Sciences 2010 67 22 3837 3847 10.1007/s00018-010-0463-y 2-s2.0-78149467339 20668908 20668908 

  8. 8 Maeng Y.-S. Choi Y. J. Kim E. K. TGFBIp regulates differentiation of EPC (CD133 + C-kit + Lin − cells) to EC through activation of the Notch signaling pathway STEM CELLS 2015 33 6 2052 2062 10.1002/stem.2003 2-s2.0-84929838903 25786978 

  9. 9 Ingram D. A. Mead L. E. Tanaka H. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood Blood 2004 104 9 2752 2760 10.1182/blood-2004-04-1396 2-s2.0-7244242362 15226175 15226175 

  10. 10 Lee O. K. Kuo T. K. Chen W.-M. Lee K.-D. Hsieh S.-L. Chen T.-H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood Blood 2004 103 5 1669 1675 10.1182/blood-2003-05-1670 2-s2.0-1442356953 14576065 14576065 

  11. 11 Hur J. Yoon C.-H. Kim H.-S. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis Arteriosclerosis, Thrombosis, and Vascular Biology 2004 24 2 288 293 10.1161/01.atv.0000114236.77009.06 2-s2.0-1042291152 

  12. 12 Lin Y. Weisdorf D. J. Solovey A. Hebbel R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood The Journal of Clinical Investigation 2000 105 1 71 77 10.1172/jci8071 2-s2.0-0033989026 10619863 

  13. 13 Yoon C.-H. Hur J. Park K.-W. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases Circulation 2005 112 11 1618 1627 10.1161/circulationaha.104.503433 2-s2.0-24944526542 16145003 

  14. 14 Iachininoto M. G. Capodimonti S. Podda M. V. In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit + cells Cytotherapy 2015 17 11 1627 1637 10.1016/j.jcyt.2015.07.012 2-s2.0-84942551029 26338480 

  15. 15 Kamei N. Kwon S.-M. Alev C. Ex-vivo expanded human blood-derived CD133 + cells promote repair of injured spinal cord Journal of the Neurological Sciences 2013 328 1-2 41 50 10.1016/j.jns.2013.02.013 2-s2.0-84876153638 23498368 

  16. 16 Slovinska L. Novotna I. Kubes M. Umbilical cord blood cells CD133+/CD133- cultivation in neural proliferation media differentiates towards neural cell lineages Archives of Medical Research 2011 42 7 555 562 10.1016/j.arcmed.2011.10.003 2-s2.0-84855486752 22015230 

  17. 17 Paprocka M. Krawczenko A. Dus D. CD133 positive progenitor endothelial cell lines from human cord blood Cytometry Part A 2011 79 8 594 602 10.1002/cyto.a.21092 2-s2.0-79960583175 21710642 21710642 

  18. 18 Zha X. Xu Z. Liu Y. Amentoflavone enhances osteogenesis of human mesenchymal stem cells through JNK and p38 MAPK pathways Journal of Natural Medicines 2016 70 3 634 644 10.1007/s11418-016-0993-1 27106512 

  19. 19 Mykhaylichenko V. Kubyshkin A. Samarin S. Fomochkina I. Anisimova L. Experimental induction of reparative morphogenesis and adaptive reserves in the ischemic myocardium using multipotent mesenchymal bone marrow-derived stem cells Pathophysiology 2016 23 2 95 104 10.1016/j.pathophys.2016.04.002 27102896 

  20. 20 Narakornsak S. Poovachiranon N. Peerapapong L. Pothacharoen P. Aungsuchawan S. Mesenchymal stem cells differentiated into chondrocyte—Like cells Acta Histochemica 2016 118 4 418 429 10.1016/j.acthis.2016.04.004 27087049 

  21. 21 Maeng Y.-S. Kwon J. Y. Kim E. K. Kwon Y.-G. Heterochromatin protein 1 alpha (HP1 α : CBX5) is a key regulator in differentiation of endothelial progenitor cells to endothelial cells Stem Cells 2015 33 5 1512 1522 10.1002/stem.1954 2-s2.0-84928580216 25588582 

  22. 22 Takahashi T. Kalka C. Masuda H. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization Nature Medicine 1999 5 4 434 438 10.1038/7434 2-s2.0-0032945433 10202935 10202935 

  23. 23 Sibov T. T. Severino P. Marti L. C. Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation Cytotechnology 2012 64 5 511 521 10.1007/s10616-012-9428-3 2-s2.0-84868452803 22328147 

  24. 24 Tondreau T. Meuleman N. Delforge A. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity Stem Cells 2005 23 8 1105 1112 10.1634/stemcells.2004-0330 2-s2.0-25444432287 15955825 

  25. 25 Chong P.-P. Selvaratnam L. Abbas A. A. Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells Journal of Orthopaedic Research 2012 30 4 634 642 10.1002/jor.21556 2-s2.0-84857033459 21922534 21922534 

  26. 26 Asahara T. Murohara T. Sullivan A. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275 5302 964 967 10.1126/science.275.5302.964 2-s2.0-0031019745 9020076 9020076 

  27. 27 Discher D. E. Mooney D. J. Zandstra P. W. Growth factors, matrices, and forces combine and control stem cells Science 2009 324 5935 1673 1677 10.1126/science.1171643 2-s2.0-67649920749 19556500 19556500 

  28. 28 Xue G. Han X. Ma X. Effect of microenvironment on differentiation of human umbilical cord mesenchymal stem cells into hepatocytes In Vitro and In Vivo BioMed Research International 2016 2016 13 8916534 10.1155/2016/8916534 

  29. 29 Lopez-Serrano C. Torres-Espin A. Hernandez J. Effects of the spinal cord injury environment on the differentiation capacity of human neural stem cells derived from induced pluripotent stem cells Cell Transplant In press 

  30. 30 Leszczynska A. O'Doherty A. Farrell E. Differentiation of vascular stem cells contributes to ectopic calcification of atherosclerotic plaque Stem Cells 2016 34 4 913 923 10.1002/stem.2315 26840742 

  31. 31 Kim S.-W. Jin H. L. Kang S.-M. Therapeutic effects of late outgrowth endothelial progenitor cells or mesenchymal stem cells derived from human umbilical cord blood on infarct repair International Journal of Cardiology 2016 203 498 507 10.1016/j.ijcard.2015.10.110 2-s2.0-84952682931 26551883 

  32. 32 Medina R. J. O'Neill C. L. Sweeney M. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities BMC Medical Genomics 2010 3, article no. 18 10.1186/1755-8794-3-18 2-s2.0-77952065242 20465783 20465783 

  33. 33 Guillevic O. Ferratge S. Pascaud J. A Novel molecular and functional stemness signature assessing human cord blood-derived endothelial progenitor cell immaturity PLOS ONE 2016 11 4 p. e0152993 10.1371/journal.pone.0152993 

  34. 34 Smadja D. M. Mauge L. Susen S. Bieche I. Gaussem P. Blood outgrowth endothelial cells from cord blood and peripheral blood: angiogenesis-related characteristics in vitro: a rebuttal Journal of Thrombosis and Haemostasis 2009 7 3 504 506 10.1111/j.1538-7836.2008.03247.x 2-s2.0-59849115791 19054319 

  35. 35 Smadja D. M. Bièche I. Silvestre J.-S. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis Arteriosclerosis, Thrombosis, and Vascular Biology 2008 28 12 2137 2143 10.1161/atvbaha.108.168815 2-s2.0-57549087201 

  36. 36 Schinköthe T. Bloch W. Schmidt A. In vitro secreting profile of human mesenchymal stem cells Stem Cells and Development 2008 17 1 199 206 10.1089/scd.2007.0175 2-s2.0-39449107724 18208373 

  37. 37 Kagiwada H. Yashiki T. Ohshima A. Tadokoro M. Nagaya N. Ohgushi H. Human mesenchymal stem cells as a stable source of VEGF-producing cells Journal of Tissue Engineering and Regenerative Medicine 2008 2 4 184 189 10.1002/term.79 2-s2.0-52449109941 18452238 18452238 

  38. 38 da Silva Meirelles L. Caplan A. I. Nardi N. B. In search of the in vivo identity of mesenchymal stem cells Stem Cells 2008 26 9 2287 2299 10.1634/stemcells.2007-1122 2-s2.0-55049092713 18566331 

  39. 39 Chamberlain G. Smith H. Rainger G. E. Middleton J. Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear PLOS ONE 2011 6 9 e25663 10.1371/journal.pone.0025663 2-s2.0-80053269532 

  40. 40 Kangsamaksin T. Murtomaki A. Kofler N. M. NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth Cancer Discovery 2015 5 2 182 197 10.1158/2159-8290.CD-14-0650 2-s2.0-84922340800 25387766 

  41. 41 Kwon S.-M. Eguchi M. Wada M. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization Circulation 2008 118 2 157 165 10.1161/circulationaha.107.754978 2-s2.0-47649088849 18591437 

  42. 42 Lee S. Yu L.-H. Lim L.-R. Down regulation of Jag-1 in VSMCs contributes to impaired angiogenesis under high glucose condition: experimental study using aortic rings of rats Clinical Hemorheology and Microcirculation 2016 61 3 497 511 10.3233/ch-141915 2-s2.0-84954146720 

  43. 43 Lindner V. Booth C. Prudovsky I. Small D. Maciag T. Liaw L. Members of the Jagged/Notch gene families are expressed in injured arteries and regulate cell phenotype via alterations in cell matrix and cell-cell interaction The American Journal of Pathology 2001 159 3 875 883 10.1016/s0002-9440(10)61763-4 2-s2.0-0034849519 11549580 

  44. 44 Pietras A. von Stedingk K. Lindgren D. Påhlman S. Axelson H. JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation Molecular Cancer Research 2011 9 5 626 636 10.1158/1541-7786.mcr-10-0508 2-s2.0-79956010254 21402725 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로