$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mesenchymal Stem Cells Derived from Human Exocrine Pancreas Spontaneously Express Pancreas Progenitor-Cell Markers in a Cell-Passage-Dependent Manner 원문보기

Stem cells international, v.2016, 2016년, pp.2142646 -   

Lee, Song (Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea) ,  Jeong, Seonghee (Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea) ,  Lee, Chanmi (Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea) ,  Oh, Jooyun (Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea) ,  Kim, Song-Cheol (Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and most connective tissues have been recognized as promising sources for cell-based therapies. MSCs have also been detected in human pancreatic tissue, including endocrine and exocrine cells. These adult human pancreas-derived ...

참고문헌 (47)

  1. 1 Shapiro A. M. J. Lakey J. R. T. Ryan E. A. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen The New England Journal of Medicine 2000 343 4 230 238 10.1056/nejm200007273430401 2-s2.0-0034721255 10911004 

  2. 2 Benhamou P. Y. Oberholzer J. Toso C. Human islet transplantation network for the treatment of Type I diabetes: first data from the Swiss-French GRAGIL consortium (1999-2000) Diabetologia 2001 44 7 859 864 10.1007/s001250100571 2-s2.0-0034940772 11508270 

  3. 3 Toma J. G. Akhavan M. Fernandes K. J. L. Isolation of multipotent adult stem cells from the dermis of mammalian skin Nature Cell Biology 2001 3 9 778 784 10.1038/ncb0901-778 2-s2.0-0034848122 11533656 

  4. 4 Colter D. C. Sekiya I. Prockop D. J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells Proceedings of the National Academy of Sciences of the United States of America 2001 98 14 7841 7845 10.1073/pnas.141221698 2-s2.0-0034934262 11427725 

  5. 5 Caplan A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine Journal of Cellular Physiology 2007 213 2 341 347 10.1002/jcp.21200 2-s2.0-34848863384 17620285 

  6. 6 Körbling M. Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? The New England Journal of Medicine 2003 349 6 570 582 10.1056/nejmra022361 2-s2.0-0042131826 12904523 

  7. 7 Ben Azouna N. Jenhani F. Regaya Z. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum Stem Cell Research & Therapy 2012 3 1, article 6 10.1186/scrt97 2-s2.0-84867053055 

  8. 8 Wagner W. Wein F. Seckinger A. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood Experimental Hematology 2005 33 11 1402 1416 10.1016/j.exphem.2005.07.003 2-s2.0-27544441193 16263424 

  9. 9 Lu L.-L. Liu Y.-J. Yang S.-G. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials Haematologica 2006 91 8 1017 1028 2-s2.0-33746936122 16870554 

  10. 10 Tondreau T. Meuleman N. Delforge A. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity Stem Cells 2005 23 8 1105 1112 10.1634/stemcells.2004-0330 2-s2.0-25444432287 15955825 

  11. 11 Hu Y. Liao L. Wang Q. Isolation and identification of mesenchymal stem cells from human fetal pancreas Journal of Laboratory and Clinical Medicine 2003 141 5 342 349 10.1016/S0022-2143(03)00022-2 2-s2.0-0037951745 12761478 

  12. 12 Seeberger K. L. Dufour J. M. Shapiro A. M. J. Lakey J. R. T. Rajotte R. V. Korbutt G. S. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium Laboratory Investigation 2006 86 2 141 153 10.1038/labinvest.3700377 2-s2.0-30944446419 16402034 

  13. 13 Baertschiger R. M. Bosco D. Morel P. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development Pancreas 2008 37 1 75 84 10.1097/mpa.0b013e31815fcb1e 2-s2.0-49649085536 18580448 

  14. 14 Woodbury D. Reynolds K. Black I. B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis Journal of Neuroscience Research 2002 69 6 908 917 10.1002/jnr.10365 2-s2.0-0037106144 12205683 

  15. 15 Reed S. A. Johnson S. E. Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types Journal of Cellular Physiology 2008 215 2 329 336 10.1002/jcp.21312 2-s2.0-40949096438 17929245 

  16. 16 Rombouts W. J. C. Ploemacher R. E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture Leukemia 2003 17 1 160 170 10.1038/sj.leu.2402763 2-s2.0-0037269456 12529674 

  17. 17 Belema-Bedada F. Uchida S. Martire A. Kostin S. Braun T. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2 Cell Stem Cell 2008 2 6 566 575 10.1016/j.stem.2008.03.003 2-s2.0-44349088779 18522849 

  18. 18 Wang T. Xu Z. Jiang W. Ma A. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell International Journal of Cardiology 2006 109 1 74 81 10.1016/j.ijcard.2005.05.072 2-s2.0-33645410509 16122823 

  19. 19 Sasaki M. Abe R. Fujita Y. Ando S. Inokuma D. Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type The Journal of Immunology 2008 180 4 2581 2587 10.4049/jimmunol.180.4.2581 2-s2.0-42149189474 18250469 

  20. 20 Reppel L. Schiavi J. Charif N. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering Stem Cell Research & Therapy 2015 6 1, article 260 10.1186/s13287-015-0263-2 2-s2.0-84951979433 

  21. 21 Neuhuber B. Timothy Himes B. Shumsky J. S. Gallo G. Fischer I. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations Brain Research 2005 1035 1 73 85 10.1016/j.brainres.2004.11.055 2-s2.0-13844289150 15713279 

  22. 22 Le Blanc K. Rasmusson I. Sundberg B. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells The Lancet 2004 363 9419 1439 1441 10.1016/s0140-6736(04)16104-7 2-s2.0-2342482526 

  23. 23 Bartholomew A. Sturgeon C. Siatskas M. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo Experimental Hematology 2002 30 1 42 48 10.1016/s0301-472x(01)00769-x 2-s2.0-0036142769 11823036 

  24. 24 Timper K. Seboek D. Eberhardt M. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells Biochemical and Biophysical Research Communications 2006 341 4 1135 1140 10.1016/j.bbrc.2006.01.072 2-s2.0-32344451060 16460677 

  25. 25 Wu L.-F. Wang N.-N. Liu Y.-S. Wei X. Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells Tissue Engineering Part A 2009 15 10 2865 2873 10.1089/ten.tea.2008.0579 2-s2.0-73349122609 19257811 

  26. 26 Karnieli O. Izhar-Prato Y. Bulvik S. Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation STEM CELLS 2007 25 11 2837 2844 10.1634/stemcells.2007-0164 2-s2.0-36248934727 17615265 

  27. 27 Li J. Zhu L. Qu X. Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pancreatic development in vivo Stem Cells and Development 2013 22 10 1576 1587 10.1089/scd.2012.0148 2-s2.0-84877354391 23259909 

  28. 28 Lee S. Youn H. Chung T. In vivo bioluminescence imaging of transplanted mesenchymal stem cells as a potential source for pancreatic regeneration Molecular Imaging 2014 13 8 10.2310/7290.2014.00023 2-s2.0-84907685197 

  29. 29 Cao X. Han Z.-B. Zhao H. Liu Q. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice International Journal of Biochemistry and Cell Biology 2014 53 372 379 10.1016/j.biocel.2014.06.003 2-s2.0-84903174349 24915493 

  30. 30 Ricordi C. Lacy P. E. Scharp D. W. Automated islet isolation from human pancreas Diabetes 1989 38 supplement 1 140 142 2-s2.0-0024532672 2642838 

  31. 31 Lin H.-T. Chiou S.-H. Kao C.-L. Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting World Journal of Gastroenterology 2006 12 28 4529 4535 10.3748/wjg.v12.i28.4529 2-s2.0-33747501756 16874866 

  32. 32 Davani B. Ikonomou L. Raaka B. M. Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo STEM CELLS 2007 25 12 3215 3222 10.1634/stemcells.2007-0323 2-s2.0-37349097054 17901402 

  33. 33 Moriscot C. De Fraipont F. Richard M.-J. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro Stem Cells 2005 23 4 594 603 10.1634/stemcells.2004-0123 2-s2.0-16444363423 15790780 

  34. 34 Karnieli O. Izhar-Prato Y. Bulvik S. Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation Stem Cells 2007 25 11 2837 2844 10.1634/stemcells.2007-0164 2-s2.0-36248934727 17615265 

  35. 35 Limbert C. Pth G. Ebert R. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages Cytotherapy 2011 13 7 802 813 10.3109/14653249.2011.571248 2-s2.0-84860389509 21506889 

  36. 36 Yatoh S. Dodge R. Akashi T. Differentiation of affinity-purified human pancreatic duct cells to β -cells Diabetes 2007 56 7 1802 1809 10.2337/db06-1670 2-s2.0-34347384162 17473224 

  37. 37 Xu H. Tsang K. S. Chan J. C. N. The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells Cell Transplantation 2013 22 1 147 158 10.3727/096368912X653057 2-s2.0-84873041547 22776709 

  38. 38 Zhou Q. Brown J. Kanarek A. Rajagopal J. Melton D. A. In vivo reprogramming of adult pancreatic exocrine cells to β -cells Nature 2008 455 7213 627 632 10.1038/nature07314 2-s2.0-53349178722 18754011 

  39. 39 Cai J. Yu C. Liu Y. Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells Journal of Molecular Cell Biology 2010 2 1 50 60 19910415 

  40. 40 Wescott M. P. Rovira M. Reichert M. Pancreatic ductal morphogenesis and the Pdx1 homeodomain transcription factor Molecular Biology of the Cell 2009 20 22 4838 4844 10.1091/mbc.E09-03-0203 2-s2.0-73949159687 19793922 

  41. 41 D'Amour K. A. Bang A. G. Eliazer S. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells Nature Biotechnology 2006 24 11 1392 1401 10.1038/nbt1259 2-s2.0-33750846133 

  42. 42 Gradwohl G. Dierich A. LeMeur M. Guillemot F. neurogenin 3 is required for the development of the four endocrine cell lineages of the pancreas Proceedings of the National Academy of Sciences of the United States of America 2000 97 4 1607 1611 10.1073/pnas.97.4.1607 2-s2.0-0034652287 10677506 

  43. 43 Kataoka K. Han S.-I. Shioda S. Hirai M. Nishizawa M. Handa H. MafA is a glucose-regulated and pancreatic β -cell-specific transcriptional activator for the insulin gene The Journal of Biological Chemistry 2002 277 51 49903 49910 10.1074/jbc.m206796200 2-s2.0-0037147306 12368292 

  44. 44 Akinci E. Banga A. Greder L. V. Dutton J. R. Slack J. M. W. Reprogramming of pancreatic exocrine cells towards a beta ( β ) cell character using Pdx1, Ngn3 and MafA Biochemical Journal 2012 442 3 539 550 10.1042/bj20111678 2-s2.0-84857888840 22150363 

  45. 45 Jennings R. E. Berry A. A. Strutt J. P. Gerrard D. T. Hanley N. A. Human pancreas development Development 2015 142 18 3126 3137 10.1242/dev.120063 2-s2.0-84942162894 26395141 

  46. 46 Murtaugh L. C. Pancreas and beta-cell development: from the actual to the possible Development 2007 134 3 427 438 10.1242/dev.02770 2-s2.0-33847402673 17185316 

  47. 47 Jiang F.-X. Mehta M. Morahan G. Quantification of insulin gene expression during development of pancreatic islet cells Pancreas 2010 39 2 201 208 10.1097/MPA.0b013e3181bab68f 2-s2.0-77649252179 19812524 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로