$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도
Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells 원문보기

생명과학회지 = Journal of life science, v.26 no.3 = no.191, 2016년, pp.376 - 386  

전도연 (경북대학교 자연과학대학 생명과학부 면역학연구실) ,  김영호 (경북대학교 자연과학대학 생명과학부 면역학연구실)

초록
AI-Helper 아이콘AI-Helper

에폽토시스에 의한 세포자멸사는 암세포에 대한 항암제 효능의 핵심적 기전이다. 항암제의 대표적인 두 종류로 알려진 DNA-손상 약제(DNA-damaging agents, DDAs)와 미세소관-손상 약제(microtubule-damaging agents, MDAs)가 암세포에 야기하는 초기 항암신호전달 기전은 다르지만, 최종적으로는 대부분 미토콘드리아 의존-에폽토시스를 통해 암세포를 사멸시킨다. 한편, DDAs에 의한 에폽토시스 유도에는 wild-type 종양억제 단백질 p53의 역할이 매우 중요하다. 그러나 인체 암의 약 50% 이상이 p53유전자의 돌연변이 때문에 종양억제 단백질로서의 p53 기능이 불활성화 되어 있다. 따라서 p53과 무관하게 에폽토시스를 유도할 수 있는 MDAs를 이용한 항암치료는 돌연변이 p53을 지닌 암세포에 대해 유리한 화학요법으로 이해된다. 최근 본 연구진은 인체 급성 백혈병 세포주인 Jurkat T 세포를 모델로 하여, MDAs (nocodazole, 17-α-estradiol, 혹은 2-methoxyestradiol)의 항암작용과 관련된 세포주기 정지 및 에폽토시스 유도 기전을 구명하였다. 그 결과, Jurkat T 세포를 MDAs로 처리할 경우, 유사분열방추사의 결함에 의한 세포주기(전중기, prometaphase) 정지, 장시간에 걸친 Cdk1의 활성화, 활성화된 Cdk1에 의한 에폽토시스 조절인자들(Bcl-2, Bcl-xL, Mcl-1 및 Bim)의 인산화, 이에 따른 Bak 활성화, 미토콘드리아막 손상 및 카스파아제 연쇄 활성화에 의해 에폽토시스가 유도됨을 밝혔다. 또한 동일한 MDA 처리 조건하에서 Bcl-2 혹은 Bcl-xL의 과발현시켜 에폽토시스 진행을 차단할 경우, Jurkat T 세포는 약제처리 후에 전중기 정지된 4N 상태에 도달하지만, 이어서 유사분열 불이행(mitotic slippage) 및 내재복제(endoreduplication)가 진행되어 다배수체들(polyploids; 8N, 16N)을 생성하게 됨을 확인하였다. 이러한 결과는 MDAs처리에 따른 다배수체들의 생성을 차단하는 세포 내 기전으로서, 전중기 정지된 4N 세포의 에폽토시스에 의한 제거가 매우 중요함을 보여준다. 특히, 다배수체는 유전적으로 매우 불안정하여 암세포의 항암제 내성 획득 및 암 재발과 직접 연관되는 것으로 알려져 있으므로, 에폽토시스 기전에 결함이 있는 암세포를 대상으로 MDAs를 이용한 항암 화학요법을 시행할 경우에는 다배수체 세포의 생성을 차단하기 위한 새로운 수단이 반드시 병행되어야 할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced a...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • apoptosis [28]. Additionally, the results showed that NOC-induced prometaphase arrest, Cdk1 acti- vation, and phosphorylation of Bcl-2, Mcl-1, and Bim were upstream of the Bcl-2-sensitive Bak activation and mitochon- dria-dependent caspase cascade activation. Similar prom- etaphase arrest, Cdk1 activation, phosphorylation of Bcl-2 family proteins (Bcl-2, Mcl-1 and Bim), and mitochondria- dependent apoptotic events were observed in Jurkat T cells treated with 17α-E2 or 2-MeO-E2 [27, 45].
  • Our results demonstrated that the MDA-induced apop- totic signaling pathway, which leads to apoptotic DNA frag- mentation in Jurkat T cells, was provoked by mitotic prom- etaphase arrest of the cell cycle and resultant Cdk1 kin- ase-mediated phosphorylation of Bcl-2 family members (Bcl -2, Bim, and Mcl-1). These effects rendered the cell suscep- tible to the onset of Bak activation, leading to mitochondrial cytochrome c release and subsequent activation of the cas- pase cascade via a reduction of the association of Bcl-2 with Bak or Bim [28].
본문요약 정보가 도움이 되었나요?

참고문헌 (80)

  1. Abraham, R. T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-2196. 

  2. Adams, R. L. and Lindsay, J. G. 1967. Hydroxyurea: reversal of inhibition and use as a cell synchronizing agent. J. Biol. Chem. 242, 1314-1317. 

  3. Amaravadi, R. K. and Thompson, C. B. 2007. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin. Cancer Res. 13, 7271-7279. 

  4. Andreassen, P. R., Lohez, O. D., Lacroix, F. B. and Margolis, R. L. 2001. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G 1 . Mol. Biol. Cell 12, 1315-1328. 

  5. Aylon, Y., Michael, D., Shmueli, A., Yabuta, N., Nojima, H. and Oren, M. 2006. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 20, 2687-2700. 

  6. Blagosklommy, M. V., Schulte, T., Nguyen, P., Trepel, J. and Neckers, L. M. 1996. Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res. 56, 1851-1854. 

  7. Brito, D. A. and Rieder, C. L. 2006. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194-1200. 

  8. Burke, D. J. and Stukenberg, P. T. 2008. Linking kinetochoremicrotubule binding to the spindle checkpoint. Developmental Cell 14, 474-479. 

  9. Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P., Pequignot, M. O., Casares, N., Valent, A., Mouhamad, S., Schmitt, E., Modjtahedi, N., Vainchenker, W., Zitvogel, L., Lazar, V., Garrido, C. and Kroemer, G. 2006. Apoptosis regulation in tetraploid cancer cells. EMBO J. 25, 2584-2595. 

  10. Cavenee, W. K. and White, R. L. 1995. The genetic basis of cancer. Sci. Am. 272, 72-79. 

  11. Chipuk, J. E. and Green, D. R. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164. 

  12. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. 2010. The BCL-2 family reunion. Mol. Cell 37, 299-310. 

  13. Chu, R., Terrano, D. T. and Chambers, T. C. 2010. Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis by phosphorylation of Mcl-1, promoting its degradation and freeing Bak from sequestration. Biochem. Pharmacol. 83, 199-206. 

  14. Contreras, A., Hale, T. K., Stenoien, D. L., Rosen, J. M., Mancini, M. A. and Herrera, R. E. 2003. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 23, 8626-8636. 

  15. Czabotar, P. E., Colman, P. M. and Huang, D. C. 2009. Bax activation by Bim? Cell Death Differ. 16, 1187-1191. 

  16. De Chiara, G., Marcocci, M. E., Torcia, M., Lucibello, M., Rosini, P., Bonini, P., Higashimoto, Y., Damonte, G., Armirotti, A., Amodei, S., Palamara, A. T., Russo, T., Garaci, E. and Cozzolino, F. 2006. Bcl-2 phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J. Biol. Chem. 281, 21353-21361. 

  17. Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D. A. and Jin, S. 2006. White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64. 

  18. Desagher, S. and Martinou, J. C. 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369-377. 

  19. Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677. 

  20. Etienne-Manneville, S. 2010. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell Biol. 22, 104-111. 

  21. Fesquet, D., Labbe, J. C., Derancourt, J., Capony, J. P., Galas, S., Girard, F., Lorca, T., Shuttleworth, J., Doree, M. and Cavadore, J. C. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12, 3111-3121. 

  22. Furukawa, Y., Iwase, S., Kikuchi, J., Terui, Y., Nakamura, M., Yamada, H., Kano, Y. and Matsuda, M. 2000. Phosphorylation of Bcl-2 protein by CDC2 kinase during G 2 /M phases and its role in cell cycle regulation. J. Biol. Chem. 275, 21661-21667. 

  23. Gabrielli, B., Brooks, K. and Pavey, S. 2012. Defective cell cycle checkpoints as targets for anti-cancer therapies. Front. Pharmacol. 3, 9. 

  24. Gadde, S. and Heald, R. 2004. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14, R797-805. 

  25. Goshima, G. and Scholey, J. M. 2010. Control of mitotic spindle length. Annu. Rev. Cell Dev. Biol. 26, 21-57. 

  26. Hainaut, P. and Hollstein, M. 2000. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res. 77, 81-137. 

  27. Han, C. R., Jun, D. Y., Kim, Y. H., Lee, J. Y. and Kim, Y. H. 2013. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells. Biochim. Biophys. Acta 1833, 2220-2232. 

  28. Han, C. R., Jun, D. Y., Lee, J. Y. and Kim, Y. H. 2014. Prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim reduces the association of Bcl-2 with Bak or Bim, provoking Bak activation and mitochondrial apoptosis in nocodazole-treated Jurkat T cells. Apoptosis 19, 224-240. 

  29. Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-70. 

  30. Hannun, Y. A. 1997. Apoptosis and dilemma of cancer chemotheraphy. Blood 89, 1845-1853. 

  31. Harley, M. E., Allan, L. A., Sanderson, H. S. and Clarke, P. R. 2010. Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 29, 2407-2420. 

  32. Hartwell, L. H. and Weinert, T. A. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634. 

  33. Hochegger, H., Takeda, S. and Hunt, T. 2008. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat. Rev. Mol. Cell Biol. 9, 910-916. 

  34. Holloway, S. L., Glotzer, M., King, R. W. and Murray, A. W. 1993. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393-1402. 

  35. Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R. and Harris, C. C. 1994. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551-3555. 

  36. Huang, J. and Klionsky, D. J. 2007. Autophagy and human disease. Cell Cycle 6, 1837-1849. 

  37. Ibrado, A. M., Kim, C. N. and Bhalla, K. 1998. Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome c and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia 12, 1930-1936. 

  38. Jordan, M. A. and Wilson, L. 2004. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253-265. 

  39. Kastan, M. B. and Bartek, J. 2004. Cell-cycle checkpoints and cancer. Nature 432, 316-323. 

  40. Kaufman, S. H. and Earnshaw, W. C. 2000. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256, 42-49. 

  41. Kim, Y. H., Proust, J. J., Buchholz, M. J., Chrest, F. J. and Nordin, A. A. 1992. Expression of the murine homologue of the cell cycle control protein p34 cdc2 in T lymphocytes. J. Immunol. 149, 17-23. 

  42. Krokan, H., Wist, E. and Krokan, R. H. 1981. Aphidicolin inhibits DNA synthesis by DNA polymerase alpha and isolated nuclei by a similar mechanism. Nucleic Acids Res. 9, 4709-4719. 

  43. Kuntz, K. and O'Connell, M. J. 2009. The G 2 DNA damage checkpoint: could this ancient regulator be the Achilles heel of cancer? Cancer Biol. Ther. 8, 1433-1439. 

  44. Lapenna, S. and Giordano, A. 2009. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 8, 547-566. 

  45. Lee, S. T., Lee, J. Y., Han, C. R., Kim, Y. H., Jun, D. Y., Taub, D. and Kim, Y. H. 2015. Dependency of 2-methoxyestradiol-induced mitochondrial apoptosis on mitotic spindle network impairment and prometaphase arrest in human Jurkat T cells. Biochem. Pharmacol. 94, 257-269. 

  46. Li, Y. M. and Broome, J. 1999. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells, Cancer Res. 59, 776-780. 

  47. Mansilla, S., Llovera, L. and Portugal, J. 2012. Chemotherapeutic targeting of cell death pathways. Anticancer Agents Med. Chem. 12, 226-238. 

  48. Margolis, R. L. 2005. Tetraploidy and tumor development. Cancer Cell 8, 353-354. 

  49. Mathias, S. and Holger, B. 2007. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist. Update 10, 162-181. 

  50. Maton, G., Thibier, C., Castro, A., Lorca, T., Prigent, C. and Jessus, C. 2003. Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes. J. Biol. Chem. 278, 21439-21449. 

  51. McGrogan, B. T., Gilmartin, B., Carney, D. N. and McCann, A. 2008. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta. 1785, 96-132. 

  52. Mollinedo, F. and Gajate, C. 2003. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8, 413-450. 

  53. Morgan, G., Wardy, R. and Bartonz, M. 2004. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin. Oncol. 16, 549-560. 

  54. Murray, A. 1994. Cell cycle checkpoints. Curr. Opin. Cell Biol. 6, 872-876. 

  55. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A. and Yuan, J. 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103. 

  56. Nitta, M., Tsuiki, H., Arima, Y., Harada, K., Nishizaki, T., Sasaki, K., Mimori, T., Ushio, Y. and Saya, H. 2002. Hyperploidy induced by drugs that inhibit formation of microtubule promotes chromosome instability. Genes Cells 7, 151-162. 

  57. Ogden, A., Rida, P. C., Knudsen, B. S., Kucuk, O. and Aneja, R. 2015. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367, 89-92. 

  58. Ohi, R. and Gould, K. L. 1999. Regulating the onset of mitosis. Curr. Opin. Cell Biol. 11, 267-273. 

  59. Pathan, N., Aime-Sempe, C., Kitada, S., Haldar, S. and Reed, J. C. 2001. Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1. Neoplasia 3, 70-79. 

  60. Rathinasamy, K. and Panda, D. 2006. Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. FEBS J. 273, 4114-4128. 

  61. Ricci, M. S. and Zong, W. X. 2006. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11, 342-357. 

  62. Robles, A., Linke, S. P. and Harris, C. C. 2002. The p53 network in lung carcinogenesis. Oncogene 21, 6898-6907. 

  63. Sherr, C. J. 1996. Cancer cell cycles. Science 274, 1672-1677. 

  64. Singh, P., Rathinasamy, K., Mohan, R. and Panda, D. 2008. Microtubule assembly dynamic: An attractive target for anticancer drugs. IUBMB Life 60, 368-375. 

  65. Srivastava, R. K., Srivastava, A. R., Korsmeyer, S. J., Nesterova, M., Cho-Chung, Y. S. and Longo, D. L. 1998. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol. Cell Biol. 18, 3509-3517. 

  66. Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., Maar, S. and Gerlich, D. W. 2009. Aurora Bmediated abscission checkpoint protects against tetraploidization. Cell 136, 473-484. 

  67. Takahashi, Y., Ogra, Y. and Suzuki, K. T. 2004. Synchronized generation of reactive oxygen species with the cell cycle. Life Sci. 75, 301-311. 

  68. Terrano, D. T., Upreti, M. and Chambers, T. C. 2010. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol. Cell Biol. 30, 640-656. 

  69. Tighe, A., Johnson, V. L. and Taylor, S. S. 2004. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J. Cell Sci. 117, 6339-6353. 

  70. Uetake, Y. and Sluder, G. 2004. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a tetraploidy checkpoint. J Cell Biol 165, 609-615. 

  71. van der Vaart, B., Akhmanova, A. and Straube, A. 2009. Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007-10013. 

  72. Vogel, C., Kienitz, A., Hofmann, I., Muller, R. and Bastians, H. 2004. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23, 6845-6853. 

  73. Waldman, T., Lengauer, C., Kinzler, K. W. and Vogelstein, B. 1996. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713-716. 

  74. Wallach, D., Boldin, M., Varfolomeev, E., Beyaert, R., Vandenabeele, P. and Fiers, W. 1997. Cell death induction by receptors of the THF family: towards a molecular understanding. FEBS Lett. 410, 96-106. 

  75. Watanabe, N., Broome, M. and Hunter, T. 1995. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J. 14, 1878-1891. 

  76. Wittmann, T., Hyman, A. and Desai, A. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3, E28-34. 

  77. Wong, C. and Stearns, T. 2005. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol. 6, 6. 

  78. Woods, C. M., Zhu, J., McQuenet, P. A., Bollag, D. and Lazarides, E. 1995. Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol. Med. 1, 506-526. 

  79. World Health Organization. World cancer report, 2014. In: WHO, eds. WHO Report. Geneva: WHO; 2014. 

  80. Yamamoto, K., Ichijo, H. and Korsmeyer, S. J. 1999. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G 2 /M. Mol. Cell Biol. 19, 8469-8478. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로