$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Practical Methodology of the Integrated Design and Power Control Unit for SHEV with Multiple Power Sources 원문보기

Journal of electrical engineering & technology, v.11 no.2, 2016년, pp.353 - 360  

Lee, Seongjun (Research Center, Defense Program, Samsung Techwin) ,  Kim, Jonghoon (Dept. of Electrical Engineering, Chosun University)

Abstract AI-Helper 아이콘AI-Helper

Series hybrid electric vehicles (SHEVs) having multiple power sources such as an engine- generator (EnGen), a battery, and an ultra-capacitor require a power control unit with high power density and reliable control operation. However, manufacturing using separate individual power converters has the...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In order to address these concerns, this approach deals with the design methodology and the power distribution algorithm of an integrated power converter of a series hybrid electric military vehicle powered by multiple power sources – two engine-generators (EnGens), a battery and an ultra-capacitor – as shown in Fig. 1. First, the interface functions of the designed integrated power control unit (IPCU) are analyzed, and then, the results of the thermal analysis conducted in order to achieve high power density and thermal stability during vehicle operation are described.
  • Moreover, because of the communication delay between the units, it is also difficult to implement the optimal power distribution and fault management algorithm. Therefore, in this work, the design methodology and power control algorithm of an integrated power control unit of the SHEV powered by multiple power sources are proposed. Through integration of the control boards and power stages that replace multiple power converters, it is possible to achieve optimal and reliable power distribution as well as a high power density of the power converter.

대상 데이터

  • 1. 6x6 powertrain structure of the series hybrid electric vehicle (SHEV).

이론/모형

  • 6. In this paper, the feedback method using the output voltage generated by the current controller and the feed-forward method with d- and q-axis current reference using 2-D dimensional tables are applied in order to control the generator current for the maximum torque per Ampere (MTPA) and field weakening control of the IPM generator [26].
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Katrašnik T. Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices. Appl Energy 2010; 79:51-64. 

  2. Wang L, Cheng Y, Zou J. Battery available power prediction of hybrid electric vehicle based on improved Dynamic Matrix Control algorithms. J Power Sources 2014; 261:337-347. 

  3. Waag W, Fleischer C, Sauer DU. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J Power Sources 2014; 258:321-339. 

  4. Miliani EH. Leakage current and commutation losses reduction in electric drives for Hybrid Electric Vehicle. J Power Sources 2014; 255:266-273. 

  5. Chen Z, Mi CC, Xiong R, Xu J, You C. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming. J Power Sources 2014; 248:416-426. 

  6. Torres JL, Gonzalez R, Gimenez A, Lopez J. Energy management strategy for plug-in hybrid electric vehicles. A comparative study. Appl Energy 2013; 114:816-824. 

  7. Wu X, Cao B, Li X, Xu J, Ren X. Component sizing optimization of plug-in hybrid electric vehicles. Appl Energy 2011; 88:799-804. 

  8. Han J, Park Y, Kim D. Optimal adaptation of equivalent factor of equivalent consumption minimization strategy for fuel cell hybrid electric vehicles under active state inequality constraints. J Power Sources 2014; 267:491-502. 

  9. Xu L, Li J, Ouyang M, Hua J, Yang G. Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. Int J Hydrog Energy 2014; 39:2374-2389. 

  10. Xu L, Ouyang M, Li J, Yang F, Lu L, Hua J. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost. Appl Energy 2013; 103:477-487. 

  11. Chopra S, Bauer P. Driving Range Extension of EV With On-Road Contactless Power Transfer-A case Study. IEEE Trans Ind Electron. 2013; 60 (1): 329-338. 

  12. Muñoz-Condes P, Gomez-Parra M, Sahcho C, Andrés MAGS, González-Fernández FJ, Carpio J, Guirado RU. On Condition Maintenance Based on the Impedance Measurement for Traction Batteries: Development and Industrial Implementation. IEEE Trans Ind Electron. 2013; 60 (7):2750-2759. 

  13. KIM SI, Park S, Park T, Cho J, Kim W, Lim S. Investigation and Experimental Verification of a Novel Spoke-Type Ferrite-Magnet Motor for Electric-Vehicle Traction Drive Applications. IEEE Trans Ind Electron. 2014; 61 (10):5763-5770. 

  14. Tong C, Zheng P, Wu Q, Bai J, Zhao Q. A Brushless Claw-Pole Double-Rotor Machine for Power-Split Hybrid Electric Vehicles. IEEE Trans Ind Electron. 2014; 61 (8):4295-4305. 

  15. Hu Y, Song X, Cao W, Ji B. New SR Drive With Integrated Charging Capacity for Plug-ion Hybrid Electric Vehicles (PHEVs). IEEE Trans Ind Electron. 2014; 61 (10):5722-5731. 

  16. Nian X, Peng F, Zhang H. Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor. IEEE Trans Ind Electron. 2014; 61 (10):5798-5808. 

  17. Lukic SM, Wirasingha SG, Rodriguez F, Cao J, Emadi A. Power Management of an Ultracapacitor/Battery Hybrid Energy Storage System in an HEV. IEEE Vehicle Power and Propulsion Conference (VPPC). 2006. 

  18. Dixon J, Nakashima I, Arcos EF, Ortuzar M. Electric Vehicle Using a Combination of Ultracapacitors and ZEBRA Battery. IEEE Trans Ind Electron. 2010; 57 (3):943-949. 

  19. Gao L, Dougal RA, Liu S. Active power sharing in hybrid battery/capacitor power sources. IEEE Applied Power Electronics Conference and Exposition (APEC). 2003. 

  20. Erickson RW, Maksimovic D. Fundamental of Power Electronics. 2 nd Edition. Kluwer Academic Publishers. 2001. 

  21. Infineon, IPOSIM, https://infineon.transim.com/iposim 

  22. Semikron, Semisel Simulation, https://infineon.transim.com/iposim 

  23. Maksimovic D, Zane R. Small Signal Discrete-time Modeling of Digitally Controlled DC-DC Converters. IEEE COMPEL Workshop. 2006. 

  24. Kim JW, Choi HS, Cho BH. A Novel Droop Method for Converter Parallel Operation. IEEE Trans Power Electron. 2002; 17 (1):25-32. 

  25. Middlebrook RD. Small-signal modeling of pulse-width modulated switch-mode power converters. Proceedings of the IEEE. 1988; 76 (4):343-354. 

  26. Bae BH, Sul SK. A Novel Dynamic Overmodulation Strategy for Fast Torque Control of High-Saliency-Ratio AC Motor. IEEE Trans Ind Appl. 2005; 41 (4):1013-1019. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로