$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Chlamydiae, obligate intracellular bacteria, are associated with a variety of human diseases. The chlamydial life cycle undergoes a biphasic development: replicative reticulate bodies (RBs) phase and infectious elementary bodies (EBs) phase. At the end of the chlamydial intracellular life cycle, EBs...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • In conclusion, the production of ROS during Chlamydia infection resulted in host-cell necrosis. We show for the first time that LMP is associated with late induction of oxidative stress of ROS, culminating in necrosis during Chlamydia infection.
  • In addition, it has been shown that NADH-driven lysosomal respiration is a permanent source of cellular ROS release [20]. In this study, with the addition of CA-074-Me, Chlamydia-induced ROS production was dramatically attenuated, whereas it had no obvious effect on the control group.
  • We then tested whether the attenuation of ROS production can affect Chlamydia-induced necrosis by measuring the percentage of PI-positive cells. Our results showed that indeed, treatment of Chlamydia-infected L929 cells with DPI and BHA can inhibit necrosis post-infection compared with controls. These results suggest that ROS production during Chlamydia infection is essential for Chlamydia-induced necrosis.
  • First, to discriminate apoptosis from necrosis, we used a classic method of dual staining with fluorescent Annexin V and PI [24]. Our results showed that the percentage of PI-positive cells gradually increased, even up to about 30% after 48 h post infection, but with no effect on Annexin-V-positive cells. When Nec1, an inhibitor of necrosis, was added, the cell death decreased, whereas ZVAD-FMK, a pan caspase inhibitor, did not show obvious inhibitory effects.

후속연구

  • We show for the first time that LMP is associated with late induction of oxidative stress of ROS, culminating in necrosis during Chlamydia infection. Our findings might provide new insights into Chlamydia-host interplays and deepen our understandings of the relationship between mechanisms of cell death and Chlamydia infection, and as such provide novel clues for the development of effective prophylactic and therapeutic approaches to treat Chlamydia infection.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. Abdul-Sater AA, Saïd-Sadier N, Lam VM, Singh B, Pettengill MA, Soares F, et al. 2010. Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J. Biol. Chem. 285: 41637-41645. 

  2. Al-Younes HM, Brinkmann V, Meyer TF. 2004. Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway. Infect. Immun. 72: 4751-4762. 

  3. Al-Zeer MA, Al-Younes HM, Braun PR, Zerrahn J, Meyer TF. 2009. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4:e4588. 

  4. Beatty WL. 2007. Lysosome repair enables host cell survival and bacterial persistence following Chlamydia trachomatis infection. Cell Microbiol. 9: 2141-2152. 

  5. Brojatsch J, Lima H, Kar AK, Jacobson LS, Muehlbauer SM, Chandran K, et al. 2014. A proteolytic cascade controls lysosome rupture and necrotic cell death mediated by lysosome-destabilizing adjuvants. PLoS One 9: e95032. 

  6. Byrne GI, Ojcius DM. 2004. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat. Rev. Microbiol. 2: 802-808. 

  7. Chen Y, Azad MB, Gibson SB. 2010. Methods for detecting autophagy and determining autophagy-induced cell death. Can. J. Physiol. Pharmacol. 88: 285-295. 

  8. Du K, Cheng XL, Zhou M, Li Q. 2013. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18: 1083-1092. 

  9. Eno CO, Zhao GP, Venkatanarayan A, Wang B, Flores ER, Li C. 2013. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radic. Biol. Med. 65: 26-37. 

  10. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, et al. 1998. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187: 487-496. 

  11. Fischer SF, Schwarz C, Vier J, Hacker G. 2001. Characterization of anti-apoptotic activities of Chlamydia pneumoniae in human cells. Infect. Immun. 69: 7121-7129. 

  12. Gao LY, Kwaik YA. 2000. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol. 8: 306-313. 

  13. Han J, Zhong CQ, Zhang DW. 2011. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat. Immunol. 12: 1143-1149. 

  14. Johansson AC, Appelqvist H, Nilsson C, Kågedal K, Roberg K, Ollinger K. 2010. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15: 527-540. 

  15. Jungas T, Verbeke P, Darville T, Ojcius DM. 2004. Cell death, BAX activation, and HMGB1 release during infection with Chlamydia. Microbes Infect. 6: 1145-1155. 

  16. Kirkegaard T, Jaattela M. 2009. Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 1793: 746-754. 

  17. Ling LU, Tan KB, Lin H, Chiu GN. 2011. The role of reactive oxygen species and autophagy in safingol-induced cell death. Cell Death Dis. 2: e129. 

  18. Mihalik R, Imre G, Petak I, Szende B, Kopper L. 2004. Cathepsin B-independent abrogation of cell death by CA-074-OMe upstream of lysosomal breakdown. Cell Death Differ. 11: 1357-1360. 

  19. Morgan MJ, Kim YS, Liu ZG. 2008. TNF alpha and reactive oxygen species in necrotic cell death. Cell Res. 18: 343-349. 

  20. Nohl H, Gille L. 2005. Lysosomal ROS formation. Redox Rep. 10: 199-205. 

  21. Nunes A, Gomes JP. 2014. Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect. Genet. Evol. 23: 49-64. 

  22. Ouellette SP, Dorsey FC, Moshiach S, Cleveland JL, Carabeo RA. 2011. Chlamydia species-dependent differences in the growth requirement for lysosomes. PLoS One 6: e16783. 

  23. Pachikara N, Zhang H, Pan Z, Jin S, Fan H. 2009. Productive Chlamydia trachomatis lymphogranuloma venereum 434 infection in cells with augmented or inactivated autophagic activities. FEMS Microbiol. Lett. 292: 240-249. 

  24. Sawai H, Domae N. 2011. Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochem. Biophys. Res. Commun. 411: 569-573. 

  25. Scaffidi P, Misteli T, Bianchi ME. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191-195. 

  26. Sun HS, Eng EW, Jeganathan S, Sin AT, Patel PC, Gracey E, et al. 2012. Chlamydia trachomatis vacuole maturation in infected macrophages. J. Leukoc. Biol. 92: 815-827. 

  27. Tanida I, Ueno T, Kominami E. 2008. LC3 and autophagy. Methods Mol. Biol. 445: 77-88. 

  28. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11: 700-714. 

  29. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. 2010. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17: 922-930. 

  30. Verzola D, Ratto E, Villaggio B, Parodi EL, Pontremoli R, Garibotto G, Viazzi F. 2014. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS One 9: e115210. 

  31. Wang JS, Wu D, Huang DY, Lin WW. 2015. TAK1 inhibition-induced RIP1-dependent apoptosis in murine macrophages relies on constitutive TNF-α signaling and ROS production. J. Biomed. Sci. 22: 76. 

  32. Waring P. 2005. Redox active calcium ion channels and cell death. Arch. Biochem. Biophys. 434: 33-42. 

  33. Weinrauch Y, Zychlinsky A. 1999. The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol. 53: 155-187. 

  34. Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, et al. 2015. Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res. 25: 237-253. 

  35. Ying S, Pettengill M, Ojcius DM, Häcker G. 2007. Host-cell survival and death during Chlamydia infection. Curr. Immunol. Rev. 3: 31-40. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로