$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가
Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.35 no.2, 2016년, pp.128 - 136  

오승용 (한경대학교 바이오가스연구센터) ,  윤영만 (한경대학교 바이오가스연구센터)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic ma...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 그러나 지금까지의 수열탄화 연구는 SCOD의 증가 효과에 따른 유기물 가용화를 중심으로 연구되어 왔으며, 유기 기질의 종류와 특성에 따른 혐기소화 미생물 반응특성 연구는 미미한 상황이다. 따라서 본 연구에서는 유기성 슬러지의 수열탄화에서 반응온도가 수열탄화액의 혐기소화 효율에 미치는 영향을 분석하기 위하여 유기 기질의 구성을 난분해성(Non-biodegradable), 분해저항성(Persistent), 이분해성(Biodegradable)의 유기물로 정의하고, 평행 1차 반응속도식(Parallel first order kinetics)을 이용하여 수열탄화 반응 온도별 유기물의 분포 특성을 분석하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Ajandouz, E. H., Desseaux, V., Tazi, S., & Puigserver, A. (2008). Effects of temperature and pH on the kinetics of caramelisation, protein cross-linking and Maillard reactions in aqueous model systems. Food Chemistry, 107(3), 1244-1252. 

  2. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science & Technology, 59(5), 927-934. 

  3. American Public Health Association. (1998). Standard methods for the examination of water and wastewater, 20th ed. Continental Edition, USA. 

  4. Beuvink, J. M. W., Spoelstra, S. F., & Hogendorp, R. J. (1992). An automated method for measuring timecourse of gas production of feedstuffs incubated with buffered rumen fluid. Netherlands Journal of Agricultural Science, 40(4), 401-407. 

  5. Bougrier, C., Delgenès, J. P., & Carrère, H. (2008). Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chemical Engineering Journal, 139(2), 236-244. 

  6. Buendía, I. M., Fernández, F. J., Villaseñor, J., & Rodríguez, L. (2009). Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresource Technology, 100(6), 1903-1909. 

  7. Buffiere, P., Loisel, D., Bernet, N., & Delgenes, J. P. (2006). Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Science and Technology, 53(8), 233-241. 

  8. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E., & Peck, M. W. (1993). Biochemical methane potential of biomass and waste feedstocks. Biomass and bioenergy, 5(1), 95-111. 

  9. Gerardi, M.H. (2003). The microbiology of anaerobic digesters. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. 

  10. Kim, H., & Jeon, Y. W. (2015). Effects of hydro-thermal reaction temperature on anaerobic biodegradability of piggery manure hydrolysate. Korean Journal of Soil Science and Fertilizer, 48(6), 602-609. 

  11. Lay, J. J., Li, Y. Y., & Noike, T. (1998). Mathematical model for methane production from landfill bioreactor. Journal of Environmental Engineering, 124(8), 730-736. 

  12. Luna-delRisco, M., Normak, A., & Orupold, K. (2011). Biochemical methane potential of different organic wastes and energy crops from Estonia. Agronomy Research, 9(1-2), 331-342. 

  13. Martins, S. I. F. S., Jongen, W. M. F., & Van Boekel, M. A. J. S. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 11(9-10), 364-373. 

  14. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y., & McCarty, P. L. (1979). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water research, 13(6), 485-492. 

  15. Pereira, C. P., Castanares, G., & Van Lier, J. B. (2012). An OxiTop Ⓡ protocol for screening plant material for its biochemical methane potential (BMP). Water Science and Technology, 66(7), 1416-1423. 

  16. Rao, M. S., Singh, S. P., Singh, A. K., & Sodha, M. S. (2000). Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Applied Energy, 66(1), 75-87. 

  17. Shin, K.S. (2013). Factor analysis of methane production potential from crop and livestock biomass. Ph.D. Thesis, Hankyong National University, Anseong, Korea. 

  18. Vavilin, V. A., & Angelidaki, I. (2005). Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnology and bioengineering, 89(1), 113-122. 

  19. Willems, A., Amat-Marco, M., & Collins, M. D. (1996). Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria. International Journal of Systematic and Evolutionary Microbiology, 46(1), 195-199. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로