$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 해삼사료원료로서 육상순환여과양식장 고형오물의 이화학적 특징과 해삼(Apostichopus japonicus)의 소화흡수율
Fecal Solid Feed from the Recirculating Aquaculture System of the Renewable Sea Cucumber Apostichopus japonicus 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.49 no.3, 2016년, pp.330 - 336  

정우철 (경상대학교 해양식품생명의학과) ,  (경상대학교 해양식품생명의학과) ,  최종국 (경상대학교 해양식품생명의학과) ,  (경상대학교 해양식품생명의학과) ,  최병대 (경상대학교 해양식품생명의학과) ,  강석중 (경상대학교 해양식품생명의학과)

Abstract AI-Helper 아이콘AI-Helper

Pollution caused by fecal solids released from recirculating aquaculture systems (RAS) is a growing global concern requiring immediate attention. Thus, this study investigated the physicochemical characteristics of fecal solid feed from RASs used for eel and rainbow trout farming. The concentrations...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그러나 육상 어류양식장에서 배출된 고형오물 처리하기 위한 방안으로 해삼에게 급여한 연구는 전무할 뿐만 아니라 육상어류양식장에서 배출된 고형오물에 대한 이화학적 특성에 대해서는 알려진 바가 거의 없다. 따라서 해삼사료원료 물질로서 육상순환 여과 양식장에서 배출된 고형오물의 이화학적 특성을 알아보고, 해삼에게 급여하여 해삼사료원료물질로서 이용가능성을 확인하고자 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Aruety T, Brunner T, Ronen Z, Gross A,Sowers K and Zilberg D. 2016. Decreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS). Aquaculture 450, 335-341. http://dx.doi.org/10.1016/j.aquaculture.2015.08.002 

  2. AOAC. 1995. Official method of analysis. 16th ed. Association of Official Analytical Chemists. Washington DC, USA, 1-43. 

  3. Bligh EG and Dyer WJ. 1959 A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917. 

  4. Danaher J, Rakocy J, Shultz R, Bailey D and Pantanella E. 2009. Dewatering and composting aquaculture waste as a growing medium in the nursery production of tomato plants. 223-229. 

  5. Duncan DB. 1955. Multiple range and multiple F test. Biometric 11, 1-42. 

  6. FAO. 2010. The state of world fisheries and aquaculture. http://www.fao.org/docrep/013/i1820e/i1820e00.htm (accessed October 18, 2010). 

  7. Furukawa A and Tsukahara H. 1966. On the acid digestion method for the determination of chromic oxides as an index substance in the study of digestion of fish feed. Nippon Suisan Gakkaishi 32, 502-506. 

  8. Gebauer R. 2004. Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Bioresour Technol 93, 155-167. 

  9. Gebauer R and Eikebrokk B. 2006. Mesophilic anaerobic treatment of sludge from salmon smolt hatching. Bioresour Technol 97, 2389-2401. 

  10. Ghaly AE, Kamal M and Mahmoud NS. 2005. Phytoremediation of aquaculture wastewater for water recycling and production of fish feed. Environ Int 31, 1-13. 

  11. Huiling S, Mengqinq L, Jingping Y and Bijuan C. 2004. Nutrient requirements and growth of the sea cucumber, Apostichopus japonicus. Advances in Sea Cucumber Aquaculture and Management, FAO Fisheries Technical 46, 327-331. 

  12. Luo G, Li P, Tan H, Du J and Liang W. 2013. The start-up and saline adaptation of mesophilic anaerobic sequencing batch reactor treating sludge from recirculating aquaculture systems. Aquacult Eng 54, 9-15. 

  13. Mirzoyan N, Parnes S, Singer A, Tal Y, Sowers K and Gross A. 2008. Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an up flow anaerobic sludge blanket (UASB) reactor. Aquaculture 279, 35-41. http://dx.doi.org/10.1016/j.aquaculture.2008.04.008. 

  14. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H and Troell M. 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017-1024. 

  15. Nelson EJ, MacDonald BA and Robinson SMC. 2012. The absorption efficiency of the suspension-feeding sea cucumber, cucumaria frondosa, and its potential as an extractive integrated multi-trophic aquaculture (IMTA) species. Aquaculture 370-371, 19-25. 

  16. Paltzat DL, Pearce CM, Barnes PA and McKinley RS. 2008. Growth and production of california sea cucumbers(Parastichopus californicus stimpson) co-cultured with suspended pacific oysters (Crassostrea gigas thunberg). Aquaculture 275, 124-137. http://dx.doi.org/10.1016/j.aquaculture.2007.07.230. 

  17. Piedrahita RH. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226, 35-44. http://dx.doi.org/10.1016/j.aquaculture.2007.07.230. 

  18. Slater MJ and Carton AG. 2007. Survivorship and growth of the sea cucumber Australostichopus (stichopus) mollis (hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389-398. 

  19. Slater MJ, Jeffs AG and Carton AG. 2009. The use of the waste from green-lipped mussels as a feed source for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292, 219-224. 

  20. Seo JY and Lee SM. 2011. Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicas. Aquacult Nutr 17, 56-61. 

  21. Xia B, Gao Q, Wang J, Li P, Zhang L and Zhang Z. 2015. Effects of dietary carbohydrate level on growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus japonicas (Selenka). Aquaculture 448, 63-70. 

  22. Yokoyama H. 2013. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages potential for integrated multi-trophic aquaculture. Aquaculture 372-375, 28-38. 

  23. Yu Z, Zhou Y, Yang H, Ma Y and Hu C. 2014. Survival, growth, food availability and assimilation efficiency of the sea cucumber Apostichopus japonicus bottom-cultured under a fish farm in southern china. Aquaculture 426-427, 238-248. http://dx.doi.org/10.1016/j.aquaculture.2014.02.013. 

  24. Yuan X, Yang H, Zhou Y, Mao Y, Zhang T and Liu Y. 2006. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 256, 457-467. 

  25. Zamora LN and Jeffs AG. 2011. Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, australostichopus mollis. Aquaculture 317, 223-228. 

  26. Zhou Y, Yang H, Liu S, Yuan X, Mao Y, Liu Y, Xu X and Zhang F. 2006. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus selenka (echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256, 510-520. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로