$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City 원문보기

Asian journal of atmospheric environment, v.10 no.2, 2016년, pp.67 - 79  

Asadollahfardi, Gholamreza (Civil Engineering Department, Kharazmi University) ,  Zangooei, Hossein (Civil Engineering Department, Kharazmi University) ,  Aria, Shiva Homayoun (Civil Engineering Department, Kharazmi University)

Abstract AI-Helper 아이콘AI-Helper

The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of...

주제어

참고문헌 (40)

  1. Bahari, R.A., Ali Abssaspour, R., Pahlavi, P. (2014) Prediction of $PM_{2.5}$ concentrations using temperature inversion effects based on an artificial neural network, The ISPRS international conference of Geospatial information research, 15-17 November, Tehran, Iran. 

  2. Caputo, M., Gimenez, M., Schlamp, M. (2003) Intercomparison of atmospheric dispersion models. Atmospheric Environment 37, 2435-2449. 

  3. Chung, K.L., Farid AitSahlia (2003) Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance, Springer Undergraduate Texts in Mathematics and Technology, ISSN 0172-6056. 

  4. Cohen, S., Intrator, N. (2002) Automatic model selection in a hybrid perceptron/radial network; Information Fusion. Special Issue on Multiple Experts 3(4), 259-266. 

  5. Deng, X., Zhang, F., Rui, W., long, F., Wang, L., Feng, Z., Chen, D., Ding, W. (2013) $PM_{2.5}$ -induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro 27(6), 1762-1770. 

  6. Dong, G.H., Zhang, P., Sun, B., Zhang, L., Chen, X., Ma, N. (2012) Long term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12 year population - based retrospective cohort study. Respiration 84(5), 360-368. 

  7. Eleuteri, A., Tagliaferri, R., Milano, L. (2005) A novel information geometric approach to variable selection in MLP networks. Neural Network 18(10), 1309-1318. 

  8. Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J. (2015) Artificial neural network forecasting of $PM_{2.5}$ pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment 107, 118-128. 

  9. Goss, C.H., Newsom, S.A., Schildcrout, J.S., Sheppard, L., Kaufman, J.D. (2004) Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine 169(7), 816-821. 

  10. Hambli, R. (2011) Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering 27(4), 461-475. 

  11. Hanna, S.R., Paine, R., Heinold, D., Kintigh, E., Baker, D. (2007) Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST 3 in the Houston ship channel area. Journal of Applied Meteorology and Climatology 46, 1372-1382. 

  12. Harsham, D.K., Bennett, M. (2008) A sensitivity study of validation of three regulatory dispersion models. American Journal of Environmental Sciences 4(1), 63-76. 

  13. Haykin, S. (1999) Neural networks: a comprehensive foundation. (2nd ed.) Upper Saddle River, New Jersey: Prentice Hal. 

  14. Jones, R.M., Nicas, M. (2014) Benchmarking of a Markov multizone model of contaminant transport. Annals of Occupational Hygiene 58(8), 1018-1031. 

  15. Kohavi, R., John, G.H. (1997) Wrappers for feature subset selection. Artificial Intelligence 97, 273-324. 

  16. Kohohen, T. (1984) Self-organization and associative memory. New York: Springer-Verlag. 

  17. Krause, P., Boyle, D.P., Base, F. (2005) Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5, 89-97. 

  18. Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Li, P., Xin, J.Y., Wang, Y.S., Wang, S.G., Li, G.X., Pan, X.C., Liu, Z.R., Wang, L.L. (2015) Reinstate regional transport of $PM_{2.5}$ as a major cause of severe haze in Beijing. Proceeding of the National Academy of Sciences of the United States of America 112, E2739-E2740. 

  19. Kuncheva, L. (2004) Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York, USA. 

  20. Kurt, A., Gulbagci, B., Karaca, F., Alagha, O. (2008) An online air pollution forecasting system using neural networks. Environment International 34, 592-598. 

  21. Logofet, D.O., Lensnaya, E.V. (2000) The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological Modelling 2(3), 285-298. 

  22. Nicas, M. (2014) Markov modeling of contaminant concentrations in indoor air. American Journal of Environmental Sciences, 61(4), 484-491. 

  23. Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G. (2003) Extensive evaluation of neural network models for the prediction of $NO_2$ and $PM_{10}$ concentrations, compared with a deterministic modeling system and measurements in central Helsinki. Atmospheric Environment 37, 4539-4550. 

  24. Niska, H., Heikkinen, M., Kolehmainen, M. (2006) Genetic algorithms and sensitivity analysis applied to select inputs of a multi-layer perceptron for the prediction of air pollutant time-series. Chapter Intelligent data engineering and automated learning-IDEAL2006 volume 4224 of the series lecture notes in computer science pp. 224-231 springer publisher. 

  25. Niska, H., Rantamaki, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J. (2005) Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment 39(35), 6524-6536. 

  26. Orr, M.J.L. (1996) Introduction to radial basis function networks, University of Edinbergh, EH89LW. 

  27. Owega, S., Khan, B.U.Z., Evans, G.J., Jervis, R.E., Fila, M. (2006) Identification of long-range aerosol transport patterns to Toronto via classification of back trajectories by cluster analysis and neural network techniques. Chemo Metrics and Intelligent Laboratory Systems 83(1), 26-33. 

  28. Romanof, N. (1982), A Markov chain model for the mean daily $SO_2$ concentrations. Atmospheric Environment 16(8), 1895-1897. 

  29. Rumelhart, D.E., McClelland, J.L. (1986) Parallel distribution processing: Exploration in the microstructure of cognition, Cambridge, MA: MIT Press. 

  30. Shamshad, A., Bawadi, M.A., Wan Hussin, W.M.A., Majid, T.A., Sanusi, S.A.M. (2005) First and second order Markov chain models for synthetic generation of wind speed time series. Energy 30, 693-708. 

  31. Slaughter, J.C., Lumley, T., Sheppard, L., Koenig, J.Q., Shapiro, G.G. (2003) Effects of ambient air pollution on symptom severity and medication use in children with asthma. Annals of Allergy, Asthma and Immunology 91(4), 346-353. 

  32. Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N. (2006) $PM_{10}$ forecasting for Thessaloniki, Greece. Environ. Modell. Softw. 21, 559-565. 

  33. Song, X.M. (1996) Radial basis function networks for empirical modeling of chemical process. MSc thesis, University of Helsinki. 

  34. Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S. (2013) Prediction of 24-hour-average $PM_{2.5}$ concentrations using a hidden Markov model with different emission distributions in Northern California. Science of the Total Environment 443, 93-103. 

  35. Taylor, H., Karlin, S. (1998) An Introduction to Stochastic Modeling. Academic Press, San Diego, California. 

  36. Voukantsis, D., Karatzas, K., Kukkonen, J., Rasanen, T., Karppinen, A., Kolehmainen, M. (2011) Intercomparison of air quality data using principal component analysis, and forecasting of $PM_{10}$ and $PM_{2.5}$ concentrations using artificial neural networks, in Thessaloniki and Helsinki. Science of the Total Environment 409, 1266-1276. 

  37. Wang, X., Liu, W. (2012) Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain. Physics Procedia 24, 1601-1606. 

  38. Wilks, D.S. (2006) Statistical methods in the atmospheric sciences. 2nd ed. Academic Press, xvii, 627 p. 

  39. Zickus, M., Greig, A.J., Niranjan, M. (2002) Comparison of four machine learning methods for predicting $PM_{10}$ concentration in Helsinki, Finland. Water, Air and Soil Pollution 2(5), 717-729. 

  40. Zurada, J.M. (1992) Introduction to Artificial Neural Systems, PWS; Singapore, 195-196. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로