$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

This paper reports the trends of researches and technologies of electronic packaging using graphene. Electronic packaging is to provide the signal and electrical current among electronic components, to remove the heat in electronic systems or components, to protect and support the electronic compone...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 산업 전반 및 다양한 연구 분야에서 가장 뜨겁게 다루어지고 있는 graphene을 이용한 전자패키징 기술 관련 최근의 연구 동향에 대하여 살펴보고자 한다.
  • 본 논문에서는 최근 광범위하게 응용 연구가 진행되고 있는 graphene을 이용한 전자패키징 기술 관련 연구 동향및 결과들을 간략하게 살펴보았다. Graphene의 기계적, 전기적, 물리적, 화학적 특성 등을 이용하여 Pb-free 복합 솔더, 기판의 graphene 표면처리, graphene 복합 conductive adhesive, graphene을 이용한 방열 기술 등의 전자패키징 적용 기술들이 그동안 연구되어 왔다.

가설 설정

  • 10. (a) A schematic of the MLG/Cu stack wire showing the distribution of electron movement and heat flow, (b) A comparison of the resistance of Cu and MLG/Cu interconnects and (c) Breakdown characteristics of Cu and 5 nm MLG/Cu interconnects. 42)
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
지금까지 Graphene에 대한 어떤 연구가 활발하게 진행되고 있는가? 5) Graphene이 발견 된 이후 현재까지 graphene 고유의 우수한 특성을 이용하여 실용하기 위한 제조, 특성 분석, 응용기술 등에 대하여 다방면으로 검토 되어 왔다. 3,6-8) 유연하고 투명한 특성을 이용한 투명 디스플레이, 유연 전극 등의 분야에 적극적인 연구가 진행되고 있고 6) 물리적 특성 등을 이용한 방열 소재 및 센서, 9-11) 트랜지스터, 12) 캐패시터, 13) 복합소재 14) 등에 관한 응용 연구들이 활발하게 이루어지고 있다. Fig.
그래핀이란? 그래핀(graphene)은 Fig.1 1) 과 같이 sp 2 탄소원자들이 벌집 구조의 안정된 육각형 원자 구조와 격자를 이룬 형태의 2차원 단일 탄소층으로 2004년 처음 실험적 발견 이래 최근 가장 광범위하게 연구되고 있는 소재 중 하나이다. 2,3) Graphene이 가지고 있는 안정된 원자 구조에 기인하여 전기전도도는 상온에서 구리보다 약 100배 이상이며 기계적 강도도 강철의 약 200배 이상으로 신축 환경 에서도 전기 전도성을 잃지 않는 것으로 알려져 있다.
Graphene의 기계적, 전기적, 열적, 물리적 특성은? 2,3) Graphene이 가지고 있는 안정된 원자 구조에 기인하여 전기전도도는 상온에서 구리보다 약 100배 이상이며 기계적 강도도 강철의 약 200배 이상으로 신축 환경 에서도 전기 전도성을 잃지 않는 것으로 알려져 있다. 4) Graphene의 기계적, 전기적, 열적, 물리적 특성은 이론적으로 영률 1 TP, 인장강도 130 GPa, 전기전도도 ~106 S/ cm, 열전도도 3,000~5,000 W/m·K으로 알려져 있다. 5) Graphene이 발견 된 이후 현재까지 graphene 고유의 우수한 특성을 이용하여 실용하기 위한 제조, 특성 분석, 응용기술 등에 대하여 다방면으로 검토 되어 왔다.
질의응답 정보가 도움이 되었나요?

참고문헌 (52)

  1. W. S. Basca, "A Theorist's Pencil and One Layer of Carbon Atoms, Graphene", from http://www.scitizen.com (2007). 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 306, 666 (2004). 

  3. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nature, 6, 183 (2007). 

  4. C. Lee, X. Wei, J. W. Kysar and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321, 385 (2008). 

  5. S. H. Lee , D. H. Lee , W. J. Lee and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Adv. Funct. Mater., 21, 1338 (2011). 

  6. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, "A roadmap for graphene", Nature, 490, 192 (2012). 

  7. D. R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, "Experimental Review of Graphene", Condens. Matter Phys., 2012, 1 (2012). 

  8. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, "Graphene based materials: Past, present and future", Mater. Sci., 56, 1178 (2011). 

  9. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, "Practical Chemical Sensors from Chemically Derived Graphene," ACS Nano, 3, 301 (2009). 

  10. R. Prasher, "Graphene Spreads the Heat," Science, 328, 185 (2010). 

  11. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, "Recent Advances in Graphene-based Biosensors," Biosens. Bioelectron., 26, 4637 (2011). 

  12. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong and J. H. Ahn, "Wafer-Scale Synthesis and Transfer of Graphene Films", Nano Lett., 10, 490 (2010). 

  13. Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, "Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films", ACS Nano, 4, 1963 (2010). 

  14. H. Kim, A. A. Abdala and C. W. Macosko, "Graphene/Polymer Nanocomposites", Macromolecules, 43, 6515 (2010). 

  15. A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander and J. Kinaret, "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, 7, 4598 (2015). 

  16. J. H. Lau, "Low Cost Flip Chip Technologies: for DCA, WLCSP, and PBGA assemblies", pp.1-2, McGraw-Hill, New York (2000). 

  17. S. K. Kang and A. K. Sarkhel, "(Pb)-Free Solders for Electronic Packaging", J. Electron. Mater., 23(8), 701 (1994). 

  18. M. Abtew and G. Selvaduray, "Lead-free Solders in Microelectronics", Mater. Sci. Eng. R, 27(5), 95 (2000). 

  19. A. Sharma, H. R. Sohn and J. P. Jung, "Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy", Metall. Mater. Trans. A, 47A, 494 (2016). 

  20. L. C. Tsao, "Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging", J. Alloys Compd., 509, 8441 (2011). 

  21. A. K. Gain, Y. C. Chan and W. K. C. Yung, "Effect of additions of $ZrO_2$ nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads", Microelectron. Reliab., 51, 2306 (2011). 

  22. M. G. Cho, S. K. Kang, D. Y. Shin and H. M. Lee, "Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging", J. Electron. Mater., 36(11), 1501 (2007). 

  23. X. D. Liu, Y. D. Han, H. Y. Jing, J. Wei and L. Y. Xu, "Effect of graphene nanosheets reinforcement on the performance of Sn-Ag-Cu lead-free solder", Mater. Sci. Eng. A, 562, 25 (2013). 

  24. M. Sobhy, A. M. El-Refai and A. Fawzy, "Effect of Graphene Oxide Nano-Sheets (GONSs) on thermal, microstructure and stress-strain characteristics of Sn-5 wt% Sb-1 wt% Ag solder alloy", J. Mater. Sci.: Mater. Electron., 27, 2349 (2016). 

  25. L. Xu, L. Wang, H. Jing, X. Liu, J. Wei and Y. Han, "Effects of graphene nanosheets on interfacial reaction of Sn-Ag-Cu solder joints", J. Alloys Compd., 650, 475 (2015). 

  26. D. Ma and P. Wu, "Improved microstructure and mechanical properties for Sn58Bi0.7Zn solder joint by addition of graphene nanosheets", J. Alloys. Compd., 671, 127 (2016). 

  27. X. Hua, Y. C. Chan, K. Zhang and K. C. Yung, "Effect of graphene doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis", J. Alloys. Compd., 580, 162 (2013). 

  28. L. Y. Xu, Z. K. Zhang, H. Y. Jing, J. Wei and Y. D. Han, "Effect of graphene nanosheets on the corrosion behavior of Sn-Ag-Cu solders", J. Mater Sci: Mater. Electron., 26, 5625 (2015). 

  29. S. W. Jeong, J. H. Kim and H. M. Lee, "Effect of Cooling Rate on Growth of the Intermetallic Compound and Fracture Mode of Near-Eutectic Sn-Ag-Cu/Cu Pad: Before and After Aging", J. Electron. Mater., 33(12), 1530 (2004). 

  30. H. K. Lee, M. H. Chun, Y. C. Chu and K. S. Oh, "A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish", J. Microelectron. Packag. Soc., 22(3), 51 (2015). 

  31. S. H. Huh, J. H. Lee and S. J. Ham, "Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 1. Effects of thickness and roughness of electroless Ni-P deposit", J. Microelectron. Packag. Soc., 21(3), 43 (2014). 

  32. T. Y. Lee, K. H. Kim, J. H. Bang, N. S. Park, M. S. Kim and S. Yoo, "Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP", J. Microelectron. Packag. Soc., 21(3), 25 (2014). 

  33. Y. C. Sohn, J. Yu, S. K. Kang, D. Y. Shih and T. Y. Lee, "Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization", J. Mater. Res., 19(8), 2428 (2004). 

  34. A. Sharif and Y. C. Chan, "Investigation of interfacial reactions between Sn-Zn solder with electrolytic Ni and electroless Ni(P) metallization", J. Alloys Compd., 440, 117 (2007). 

  35. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, "Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni", J. Electron. Mater., 31(6), 584 (2002). 

  36. Y. K. Jee, Y. H. Ko and J. Yu, "Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad", J. Mater. Res., 22(7), 1879 (2007). 

  37. Y. K. Jee, Y. H. Ko and J. Yu, "Effects of Zn addition on the drop reliability of Sn-3.5Ag-xZn/Ni(P) solder joints", J. Mater. Res., 22(10), 2776 (2007). 

  38. Y. M. Kim, K. M. Harr and Y. H. Kim, "Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate", Electron. Mater. Lett., 6(4), 151 (2010). 

  39. Y. H. Ko, J. D. Lee, T. Yoon, C. W. Lee and T. S. Kim, "Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene", ACS Appl. Mater. Interfaces, 8, 5679 (2016). 

  40. K. Lee, K. S. Kim and K. Suganuma, "Electro-migration Phenomenon in Flip-chip Packages", J. Microelectron. Packag. Soc., 17(4), 11 (2010). 

  41. J. H. Bong, S. J. Yoon, A. Yoon, W. S. Hwang and B. J. Cho, "Ultrathin graphene and graphene oxide layers as a diffusion barrier for advanced Cu metallization", Appl. Phys. Lett., 106, 0632112 (2015). 

  42. C. G. Kang, S. K. Lim, S. Lee, S. K. Lee, C. Cho, Y. G. Lee, H. J. Hwang, Y. Kim, H. J. Choi, S. H. Choe, M. H. Ham and B. H. Lee, "Effects of multi-layer graphene capping on Cu interconnects", Nanotechnology, 24, 115707 (2013). 

  43. S. J. Yoon, A. Yoon, W. S. Hwang, S. Y. Choi and B. J. Cho, "Improved Electromigration-Resistance of Cu Interconnects by Graphene-Based Capping Layer", Proc. 2015 Symposium on VLSI Technology, Kyoto, T124, IEEE (2015). 

  44. C. P. Wong, J. Xu, L. Zhu, Y. Li, H. Jiang, Y. Sun, J. Lu and H. Dong, "Recent Advances on Polymers and Polymer Nanocomposites for Advanced Electronic Packaging Applications", Proc. 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, Shanghai, 1, IEEE (2005). 

  45. J. Kim, B. S. Yim, J. M. Kim and J. Kim, "The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs)", Microelectron. Reliab., 52, 595 (2012). 

  46. N. W. Pu, Y. Y. Peng, P. C. Wang, C. Y. Chen, J. N. Shi, Y. M. Liu, M. D. Ger and C. L. Chang, "Application of nitrogendoped graphene nanosheets in electrically conductive adhesives", Carbon, 67, 449 (2014). 

  47. S. A. Ju, K. Kim, J. H. Kim and S. S. Lee, "Graphene-Wrapped Hybrid Spheres of Electrical Conductivity", ACS Appl. Mater. Interfaces, 3, 2904 (2011). 

  48. K. M. F. Shahil and A. A. Balandin, "Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials", Solid State Commun., 152, 1331 (2012). 

  49. K. M. F. Shahil and A. A. Balandin, "Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials", Nano Lett., 12(2), 861 (2012). 

  50. X. Zhang, K. K. Yeung, Z. Gao, J. Li, H. Sun, H. Xu, K. Zhang. M. Zhang, Z. Chen, M. M. F. Yuen and S. Yang, "Exceptional thermal interface properties of a three-dimensional graphene foam", Carbon, 66, 201 (2014). 

  51. W. P. S. Saw and M. Mariatti, "Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications", J. Mater. Sci.: Mater. Electron., 23, 817 (2012). 

  52. Z. Gao, Y. Zhang, Y. Fu, M. M. F. Yuen and J. Liu, "Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots", Carbon, 61, 342 (2013). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로