$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 국부 중등도 온열요법의 암치료 효과
Effects of Regional Hyperthermia with Moderate Temperature on Cancer Treatment 원문보기

생명과학회지 = Journal of life science, v.26 no.9 = no.197, 2016년, pp.1088 - 1096  

강치덕 (부산대학교 의학전문대학원 생화학교실) ,  김선희 (부산대학교 의학전문대학원 생화학교실)

초록
AI-Helper 아이콘AI-Helper

중등도 온열요법이 종양세포에 대한 세포독성, 종양혈관에 미치는 영향 및 면역학적 영향 등 다양한 항종양 활성을 가지고 있음에도 불구하고, 중등도 온열요법은 그 자체만으로는 항암효과가 뚜렷하지 않아, 방사선치료나 항암제 치료와 병용하여 암치료에 사용되고 있으면서, 심각한 부작용이 없이 어느 정도의 긍정적인 효과를 보이고 있다. 모든 연구에서 긍정적인 결과를 보이지 못한 것은 열충격 반응 그 자체가 온열요법의 항암효과를 방해하기 때문이다. 그러므로 온열요법의 효과를 증가시키기 위해서는 온열요법의 항암효과에 대한 부정적인 영향을 제거해야 한다. 암세포뿐만 아니라 혈관, 면역 세포 및 결체조직 등을 포함하고 있는 종양조직의 열 스트레스에 대한 반응은 매우 복잡하지만, 임상적으로 사용되고 있는 약물 중 열 스트레스 반응을 조절할 수 있는 약물들이 암환자의 온열요법 치료 효과를 개선시킬 수 있는 지에 대한 연구가 필요하다. 이 종설에서는 현재 임상에서 사용하고 있는 온열요법 장치로서 최신의 기술이며, 중등도 온도가 정상 조직에 대한 부작용 없이 기존 치료법의 효과를 증가시킬 수 있기 때문에, 비침습적 체외용 고주파 중등도 온열요법을 중심으로 다룬다.

Abstract AI-Helper 아이콘AI-Helper

Despite that moderate hyperthermia can exert various antitumor activities such as direct cytotoxic effects on tumor cells, effects on tumor vasculatures and immunological effects, hyperthermia has been usually combined with radiotherapy or chemotherapy due to its limited efficacy in cancer treatment...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • an irreversible cytotoxicity [17, 27, 52]. In this study, temperature of 43℃ seemed to be a critical breakpoint to induce significant cell death, since the induction of cell death at lower temperatures below 42~43℃ is remarkably lower than that at higher temperature above 43℃. This re- sult is related with the reference temperature of 43oC for calculation of thermal dose, CEM 43oC T90, the number of cumulative equivalent minutes at 43oC exceeded by 90% of monitored points within the tumor.
본문요약 정보가 도움이 되었나요?

참고문헌 (80)

  1. Ahmed, K. and Zaidi, S. F. 2013. Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis. J. Pak. Med. Assoc. 63, 504-508. 

  2. Amaya, C., Kurisetty, V., Stiles, J., Nyakeriga, A. M., Arumugam, A., Lakshmanaswamy, R., Botez, C. E., Mitchell, D. C. and Bryan, B. A. 2014. A genomics approach to identify susceptibilities of breast cancer cells to "fever-range" hyperthermia. BMC Cancer 14, 81. 

  3. Andre, F., Schartz, N. E., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E. and Zitvogel, L. 2002. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295-305. 

  4. Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G. and Fais, S. 2002. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195, 1303-1316. 

  5. Banerji, U. 2009. Heat shock protein 90 as a drug target: some like it hot. Clin. Cancer Res. 15, 9-14. 

  6. Binder, R. J. and Srivastava, P. K. 2005. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat. Immunol. 6, 593-599. 

  7. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. and Ciocca, D. R. 2006. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164-172. 

  8. Calderwood, S. K., Theriault, J. R. and Gong, J. 2005. How is the immune response affected by hyperthermia and heat shock proteins? Int. J. Hyperthermia 21, 713-716. 

  9. Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J. P., Boireau, W., Rouleau, A., Simon, B., Lanneau, D., De Thonel, A., Multhoff, G., Hamman, A., Martin, F., Chauffert, B., Solary, E., Zitvogel, L., Garrido, C., Ryffel, B., Borg, C., Apetoh, L., Rebe, C. and Ghiringhelli, F. 2010. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 120, 457-471. 

  10. Chen, T., Guo, J., Yang, M., Zhu, X. and Cao, X. 2011. Chemokine-containing exosomes are released from heatstressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol. 186, 2219-2228. 

  11. Chicheł, A., Skowronek, J., Kubaszewska, M. and Kanikowski, M. 2007. Hyperthermia ? description of a method and a review of clinical applications. Rep. Pract. Oncol. Radiother. 12, 267-275. 

  12. Chu, K. F. and Dupuy, D. E. 2014. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199-208. 

  13. Cihoric, N., Tsikkinis, A., van Rhoon, G., Crezee, H., Aebersold, D. M., Bodis, S., Beck, M., Nadobny, J., Budach, V., Wust, P. and Ghadjar, P. 2015. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials. gov registry. Int. J. Hyperthermia 31, 609-614. 

  14. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. and Tabi, Z. 2007. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67, 7458-7466. 

  15. Dai, S., Wan, T., Wang, B., Zhou, X., Xiu, F., Chen, T., Wu, Y. and Cao, X. 2005. More efficient induction of HLA-A* 0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin. Cancer Res. 11, 7554-7563. 

  16. Datta, N. R., Ordonez, S. G., Gaipl, U. S., Paulides, M. M., Crezee, H., Gellermann, J., Marder, D., Puric, E. and Bodis, S. 2015. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat. Rev. 41, 742-753. 

  17. Dewhirst, M. W., Viglianti, B. L., Lora-Michiels, M., Hanson, M. and Hoopes, P. J. 2003. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia 19, 267-294. 

  18. Dickson, J. A. and Calderwood, S. K. 1980. Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann. N. Y. Acad. Sci. 335, 180-205. 

  19. Endo, H., Yano, M., Okumura, Y. and Kido, H. 2014. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis. 5, e1027. 

  20. Frey, B., Weiss, E. M., Rubner, Y., Wunderlich, R., Ott, O. J., Sauer, R., Fietkau, R. and Gaipl, U. S. 2012. Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia 28, 528-542. 

  21. Fuggetta, M. P., Alvino, E., Tricarico, M., D′Atri, S., Pepponi, R., Prete, S. P. and Bonmassar, E. 2000. In vitro effect of hyperthermia on natural cell-mediated cytotoxicity. Anticancer Res. 20, 1667-1672. 

  22. Groh, V., Bahram, S., Bauer, S., Herman, A., Beauchamp, M. and Spies, T. 1996. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 93, 12445-12450. 

  23. Habash, R. W., Bansal, R., Krewski, D. and Alhafid, H. T. 2006. Thermal therapy, part 2: hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491-542. 

  24. Harada, H., Murakami, T., Tea, S. S., Takeuchi, A., Koga, T., Okada, S., Suico, M. A., Shuto, T. and Kai, H. 2007. Heat shock suppresses human NK cell cytotoxicity via regulation of perforin. Int. J. Hyperthermia 23, 657-665. 

  25. Hedlund, M., Nagaeva, O., Kargl, D., Baranov, V. and Mincheva-Nilsson, L. 2011. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One 6, e16899. 

  26. Heike, M., Noll, B. and Meyer zum Buschenfelde, K. H. 1996. Heat shock protein-peptide complexes for use in vaccines. J. Leukoc. Biol. 60, 153-158. 

  27. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R. and Riess, H. 2002. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33-56. 

  28. Hobohm, U. 2001. Fever and cancer in perspective. Cancer Immunol. Immunother. 50, 391-396. 

  29. Horsman, M. R. and Overgaard, J. 2007. Hyperthermia: a potent enhancer of radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 19, 418-426. 

  30. Huber, V., Fais, S., Iero, M., Lugini, L., Canese, P., Squarcina, P., Zaccheddu, A., Colone, M., Arancia, G., Gentile, M., Seregni, E., Valenti, R., Ballabio, G., Belli, F., Leo, E., Parmiani, G. and Rivoltini, L. 2005. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128, 1796-1804. 

  31. Ischia, J. and So, A. I. 2013. The role of heat shock proteins in bladder cancer. Nat. Rev. Urol. 10, 386-395. 

  32. Ishii, T., Udono, H., Yamano, T., Ohta, H., Uenaka, A., Ono, T., Hizuta, A., Tanaka, N., Srivastava, P. K. and Nakayama, E. 1999. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol. 162, 1303-1309. 

  33. Iwata, K., Shakil, A., Hur, W. J., Makepeace, C. M., Griffin, R. J. and Song, C. W. 1996. Tumour pO2 can be increased markedly by mild hyperthermia. Br. J. Cancer Suppl. 27, S217- 221. 

  34. Jego, G., Hazoume, A., Seigneuric, R. and Garrido, C. 2013. Targeting heat shock proteins in cancer. Cancer Lett. 332, 275-285. 

  35. Kennedy, D., Jager, R., Mosser, D. D. and Samali, A. 2014. Regulation of apoptosis by heat shock proteins. IUBMB Life 66, 327-338. 

  36. Kim, H., Park, B. K. and Kim, C. K. 2008. Spontaneous regression of pulmonary and adrenal metastases following percutaneous radiofrequency ablation of a recurrent renal cell carcinoma. Kor. J. Radiol. 9, 470-472. 

  37. Kim, J. Y., Son, Y. O., Park, S. W., Bae, J. H., Chung, J. S., Kim, H. H., Chung, B. S., Kim, S. H. and Kang, C. D. 2006. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp. Mol. Med. 38, 474-484. 

  38. Kim, S. J., Ha, G. H., Kim, S. H. and Kang, C. D. 2014. Combination of cancer immunotherapy with clinically available drugs that can block immunosuppressive cells. Immunol. Invest. 43, 517-534. 

  39. Labani-Motlagh, A., Israelsson, P., Ottander, U., Lundin, E., Nagaev, I., Nagaeva, O., Dehlin, E., Baranov, V. and Mincheva-Nilsson, L. 2016. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 37, 5455-5466. 

  40. Lanneau, D., Brunet, M., Frisan, E., Solary, E., Fontenay, M. and Garrido, C. 2008. Heat shock proteins: essential proteins for apoptosis regulation. J. Cell Mol. Med. 12, 743-761. 

  41. Lepock, J. R. 2003. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int. J. Hyperthermia 19, 252-266. 

  42. Lopez-Soto, A., Huergo-Zapico, L., Acebes-Huerta, A., Villa-Alvarez, M. and Gonzalez, S. 2015. NKG2D signaling in cancer immunosurveillance. Int. J. Cancer 136, 1741-1750. 

  43. Mallory, M., Gogineni, E., Jones, G. C., Greer, L. and Simone, C. B. 2nd. 2016. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit. Rev. Oncol. Hematol. 97, 56-64. 

  44. Marleau, A. M., Chen, C. S., Joyce, J. A. and Tullis, R. H. 2012. Exosome removal as a therapeutic adjuvant in cancer. J. Transl. Med. 10, 134. 

  45. Melero, I., Berman, D. M., Aznar, M. A., Korman, A. J., Perez Gracia, J. L. and Haanen, J. 2015. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 15, 457-472. 

  46. Mincheva-Nilsson, L. and Baranov, V. 2014. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin. Cancer Biol. 28, 24-30. 

  47. Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796. 

  48. Multhoff, G. 1997. Heat shock protein 72 (HSP72), a hyperthermia-inducible immunogenic determinant on leukemic K562 and Ewing's sarcoma cells. Int. J. Hyperthermia 13, 39-48. 

  49. Multhoff, G., Botzler, C., Wiesnet, M., Eissner, G. and Issels, R. 1995. CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86, 1374-1382. 

  50. Multhoff, G., Botzler, C., Wiesnet, M., Muller, E., Meier, T., Wilmanns, W. and Issels, R. D. 1995. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer 61, 272-279. 

  51. Piper, P. W. and Millson, S. H. 2011. Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges. Pharmaceuticals 1400-1422. 

  52. Rampersaud, E. N., Vujaskovic, Z. and Inman, B. A. 2010. Hyperthermia as a treatment for bladder cancer. Oncology (Williston Park) 24, 1149-1155. 

  53. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. and Jung, H. 2013. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413-441. 

  54. Richter, K., Haslbeck, M. and Buchner, J. 2010. The heat shock response: life on the verge of death. Mol. Cell 40, 253-266. 

  55. Roussakow, S. 2013. The History of Hyperthermia Rise and Decline. Conference Papers in Medicine 2013, http://dx.doi.org/10.1155/2013/428027. 

  56. Sanchez-Ortiz, R. F., Tannir, N., Ahrar, K. and Wood, C. G. 2003. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: an in situ tumor vaccine? J. Urol. 170, 178-179. 

  57. Sapareto, S. A. and Dewey, W. C. 1984. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10, 787-800. 

  58. Savina, A., Furlan, M., Vidal, M. and Colombo, M. I. 2003. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083-20090. 

  59. Schlom, J. 2012. Therapeutic cancer vaccines: current status and moving forward. J. Natl. Cancer Inst. 104, 599-613. 

  60. Schmitt, E., Maingret, L., Puig, P. E., Rerole, A. L., Ghiringhelli, F., Hammann, A., Solary, E., Kroemer, G. and Garrido, C. 2006. Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res. 66, 4191-4197. 

  61. Shamovsky, I. and Nudler, E. 2008. New insights into the mechanism of heat shock response activation. Cell Mol. Life Sci. 65, 855-861. 

  62. Shen, R. N., Lu, L., Young, P., Shidnia, H., Hornback, N. B. and Broxmeyer, H. E. 1994. Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int. J. Radiat. Oncol. Biol. Phys. 29, 821-826. 

  63. Shevtsov, M. and Multhoff, G. 2016. Heat shock proteinpeptide and HSP-based immunotherapies for the treatment of cancer. Front. Immunol. 7, 171. 

  64. Siemann, D. W. and Horsman, M. R. 2015. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol. Ther. 153, 107-124. 

  65. Srivastava, P. K. and Amato, R. J. 2001. Heat shock proteins: the ′Swiss Army Knife′ vaccines against cancers and infectious agents. Vaccine 19, 2590-2597. 

  66. Srivastava, P. K. and Udono, H. 1994. Heat shock protein-peptide complexes in cancer immunotherapy. Curr. Opin. Immunol. 6, 728-732. 

  67. Starnes, C. O. 1992. Coley's toxins in perspective. Nature 357, 11-12. 

  68. Tonkiss, J. and Calderwood, S. K. 2005. Regulation of heat shock gene transcription in neuronal cells. Int J Hyperthermia 21, 433-444. 

  69. Toraya-Brown, S. and Fiering, S. 2014. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int. J. Hyperthermia 30, 531-539. 

  70. Udono, H. and Srivastava, P. K. 1994. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol. 152, 5398-5403. 

  71. Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., Corbelli, A., Fais, S., Parmiani, G. and Rivoltini, L. 2006. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 66, 9290-9298. 

  72. van der Zee, J. 2002. Heating the patient: a promising approach? Ann. Oncol. 13, 1173-1184. 

  73. Voellmy, R. 1994. Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit. Rev. Eukaryot. Gene Expr. 4, 357-401. 

  74. Whitesell, L. and Lin, N. U. 2012. HSP90 as a platform for the assembly of more effective cancer chemotherapy. Biochim. Biophys. Acta 1823, 756-766. 

  75. Whitesell, L. and Lindquist, S. 2009. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets 13, 469-478. 

  76. Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., Flament, C., Pouzieux, S., Faure, F., Tursz, T., Angevin, E., Amigorena, S. and Zitvogel, L. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297-303. 

  77. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R. and Schlag, P. M. 2002. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487-497. 

  78. Yang, H. X. and Mitchel, R. E. 1991. Hyperthermic inactivation, recovery and induced thermotolerance of human natural killer cell lytic function. Int. J. Hyperthermia 7, 35-49. 

  79. Yao, Y., Wang, C., Wei, W., Shen, C., Deng, X., Chen, L., Ma, L. and Hao, S. 2014. Dendritic cells pulsed with leukemia cell-derived exosomes more efficiently induce antileukemic immunities. PLoS One 9, e91463. 

  80. Zhang, Y., Huang, L., Zhang, J., Moskophidis, D. and Mivechi, N. F. 2002. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J. Cell Biochem. 86, 376-393. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로