$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 산업보건 측면에서의 희토류 건강영향 평가
Evaluation of Rare Earths viewed from the Occupational Health 원문보기

한국산업보건학회지 = Journal of Korean Society of Occupational and Environmental Hygiene, v.26 no.3, 2016년, pp.237 - 252  

신서호 (안전보건공단 산업안전보건연구원 화학물질독성연구실) ,  임경택 (안전보건공단 산업안전보건연구원 화학물질독성연구실) ,  김종춘 (전남대학교 수의과대학)

Abstract AI-Helper 아이콘AI-Helper

Objectives: This study was conducted in order to improve the current understanding of rare earths(RE) and to provide supporting data for establishing occupational health policies by reviewing the toxicological data and issues caused by the use of RE compounds in various fields. Methods: To evaluate ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 희토류 관련 산업에서 근로자의 건강보호를 위해 현재까지 보고된 희토류 사용에 따른 문제점 및 독성에 대한 자료를 정리ㆍ고찰하여 희토류에 대한 이해를 증진시키고, 궁극적으로 정책마련 또는 이를 뒷받침하는 자료를 제공하고자 하였다.
  • 본 연구는 산업보건 측면에서 희토류의 잠재적인 영향을 평가하기 위해 희토류의 동물 및 세포독성, 인체독성, 환경독성, 산업위생, 역학조사 및 적용분야와 관련한 여러 논문 및 서적의 자료를 정리ㆍ고찰하였다. 필요한 자료검색을 위해 주로 인터넷을 이용하였고, 검색 사이트로 구글 학술검색(http://scholar.
  • 본 연구의 목적을 달성하기 위해 현재까지 보고된 희토류 사용에 따른 문제점, 인체독성 등의 역학조사, 세포 및 동물을 이용한 독성시험 및 관련 기전연구, 관련 산업의 안전보건 이슈, 최근 동향 및 향후 보완점을 주로 다룰 필요가 있었다. 아울러 희토류를 이용한 상품이 대중적이진 않으나 일부 시장에 판매되거나 의학적, 농업적 적용 사례가 있는바 이에 대한 정당성을 확고히 하고, 남용을 예방하고자 희토류의 이로운 효과 또한 중점적으로 다뤘다. 따라서 검색된 자료 중 필요한 자료만을 다시 선별하였고, 선별된 자료를 분류하여 최종적으로 ‘희토류의 노출및 생체축적’, ‘희토류의 유해성평가’, ‘희토류의 이로운 효과’ 그리고 ‘산업보건 향상을 위한 추가적 노력’ 부문으로 정리하였으며 이를 토대로 관련 정책 제시 등 향후 희토류 산업의 나아갈 방향에 대해 고찰하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
희토류 원소란 무엇인가? 희토류 원소(Rare earth elements)는 란탄부터 루테튬까지의 란타넘족 15개 및 스칸듐과 이트륨을 포함한 17개의 화학원소의 통칭으로 물리화학적으로 유사한 성질을 가진다(Hirano & Suzuki, 1996). 이중에서도 원자량, 물리화학적 성질에 따라 경(輕)희토류(란탄, 세륨, 프라세오디뮴, 네오디뮴), 중(中)희토류 (프로메튬, 사마륨, 유로퓸, 가돌리늄), 중(重)희토류 (테르븀, 디스프로슘, 홀뮴, 에르븀, 툴륨, 이테르븀, 루테튬), 비(非)란탄계(스칸듐, 이트륨)로 나뉜다.
희토류 원소를 구분하면 어떤 종류가 있는가? 희토류 원소(Rare earth elements)는 란탄부터 루테튬까지의 란타넘족 15개 및 스칸듐과 이트륨을 포함한 17개의 화학원소의 통칭으로 물리화학적으로 유사한 성질을 가진다(Hirano & Suzuki, 1996). 이중에서도 원자량, 물리화학적 성질에 따라 경(輕)희토류(란탄, 세륨, 프라세오디뮴, 네오디뮴), 중(中)희토류 (프로메튬, 사마륨, 유로퓸, 가돌리늄), 중(重)희토류 (테르븀, 디스프로슘, 홀뮴, 에르븀, 툴륨, 이테르븀, 루테튬), 비(非)란탄계(스칸듐, 이트륨)로 나뉜다. 프로메튬을 제외하면 희토류는 지각에 할로겐화물, 탄산염, 산화물, 인산염 및 규산염의 형태로 상대적으로 풍부하게 존재하나 단일 금속으로 집중되어 있지는 않다.
희토류 및 관련 화합물의 고유한 성질을 이용하여 어떤 산업분야에서 활용되고 있는가? 지난 10년간 신소재의 개발에 호응하여 희토류 및 관련 화합물들은 그 사용량이 증가하고 있으며 화학적ㆍ전기적ㆍ자성적ㆍ발광적ㆍ방사성 차폐 등의 독특한 자체의 고유한 성질을 이용하여 현재 자성재, 촉매재, 배터리, 연마재, 합금재, 형광재 등 다양한 산업분야에서 활용되고 있다. 또한, 희토류는 에너지 생산ㆍ저감ㆍ효율적 측면으로 스마트폰 등 모바일기기의 부품소재, 컴퓨터 하드 디스크 드라이브, 하이 브리드 및 전기 자동차, 디스플레이용 형광소재, 이 차전지, 풍력터빈 등에도 활용되어 첨단산업의 비타민으로 불리우고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (72)

  1. Aalapati S, Ganapathy S, Manapuram S, Anumolu G, Prakya BM. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice. Nanotoxicology 2014;8:786-798 

  2. Bustamante P, Miramand P. Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci Total Environ 2005;337:59-73 

  3. Carpenter D, Boutin C, Allison JE, Parsons JL, Ellis DM. Uptake and effects of six rare earth elements(REEs) on selected native and crop species growing in contaminated soils. PLoS One 2015;10(6):e0129936 

  4. Cassee FR, Campbell A, Boere AJ, McLean SG, Duffin R, et al. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice. Environ Res 2012;115:1-10 

  5. Cassee FR, van Balen EC, Singh C, Green D, Muijser H, et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 2011;41:213-229 

  6. Chen H, Longfield DE, Varahagiri VS, Nguyen KT, Patrick AL, et al. Optical imaging in tissue with X-ray excited luminescent sensors. Analyst 2011;136:3438-3345 

  7. Cheng J, Cheng Z, Hu R, Cui Y, Cai J, et al. Immune dysfunction and liver damage of mice following exposure to lanthanoids. Environ Toxicol 2014;29(1):64-73 

  8. Dahle JT, Arai Y. Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Publ Health 2015;12: 1253-1278 

  9. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine(Lond) 2013;8:1483-1508 

  10. Dillow C. A new international project aims to track U.S. electronic waste for recycling [serial online] 2011 [cited 2016 July 16]. Available from: URL:https://www.popsci.com/science/article/2011-05 

  11. Graf F, Fahrer J, Maus S, Morgenstern A, Bruchertseifer F, et al. DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy. PLoS One 2014:9:e88239 

  12. Goecke F, Jerez CG, Zachleder V, Figueroa FL, Bisova K, et al. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front Microbiol 2015;6:2 

  13. Hao Z, Li Y, Li H, Wei B, Liao X, et al. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study. Chemosphere 2015;128:161-170 

  14. Haque N, Hughes A, Lim S, Vernon C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014;3(4):614-635 

  15. Herrmann H, Nolde J, Berger S, Heise S. Aquatic ecotoxicity of lanthanum - A review and an attempt to derive water and sediment quality criteria. Ecotoxicol. Environ Saf 2016;124:213-238 

  16. Hirano S, Suzuki KT. Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 1996;104(Suppl. 1):85-95 

  17. Hong J, Pan X, Zhao X, Yu X, Sang X, et al. Molecular mechanism of oxidative damage of lung in mice following exposure to lanthanum chloride. Environ Toxicol 2015;30:357-365 

  18. Huang P, Li J, Zhang S, Chen C, Han Y, et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ Toxicol Pharmacol 2011;31:25-32 

  19. Humphries M. Rare Earth Elements: The Global Supply Chain. Congressional Research Service, CPS Report for Congress [serial online] 2015 [cited 2016 July 16]. Available from: https://www.fas.org/sgp/crs/natsec/R41347.pdf 

  20. Jenkins W, Perone P, Walker K, Bhagavathula N, Aslam MN, et al. Fibroblast response to lanthanoid metal ion stimulation: potential contribution to fibrotic tissue injury. Biol Trace Elem Res 2011;144:621-635 

  21. Jha AM, Singh AC. Clastogenicity of lanthanides: induction of chromosomal aberration in bone marrow cells of mice in vivo. Mutat Res 1995;341:193-197 

  22. Keller J, Wohlleben W, Ma-Hock L, Strauss V, Groters S, et al. Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-ceria. Arch Toxicol 2014;88:2033-2059 

  23. Kitchin KT, Prasad RY, Wallace K. Oxidative stress studies of six $TiO_2$ and two $CeO_2 $ nanomaterials: immuno-spin trapping results with DNA. Nanotoxicology 2011;5: 546-556 

  24. Kolli MB, Manne ND, Para R, Nalabotu SK, Nandyala G, et al. Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension. Biomaterials 2014; 35:9951-9562 

  25. Kumari M, Kumari SI, Kamal SS, Grover P. Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure. Mutat Res Genet Toxicol Environ Mutagen 2014a;775-776:7-19 

  26. Kumari M, Singh SP, Chinde S, Rahman MF, Mahboob M, et al. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. Int J Toxicol 2014b;33: 86-97 

  27. Laznickova A, Biricova V, Laznicek M, Hermann P. Mono (pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: radiolabeling and biodistribution studies. Appl Radiat Isot 2014;84:70-77 

  28. Li X, Chen Z, Chen Z, Zhang Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 2013;93:1240-1246 

  29. Lim CH. Toxicity of two different sized lanthanum oxides in cultured cells and Sprague-Dawley rats. Toxicol Res 2015;31:181-189 

  30. Liu D, Zhang J, Wang G, Liu X, Wang S, et al. The dual-effects of $LaCl_3$ on the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. Biol Trace Elem Res 2012;150:433-440 

  31. Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, et al. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol 2012;262: 255-264 

  32. Ma JY, Young SH, Mercer RR, Barger M, Schwegler-Berry D, et al. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis. Toxicol Appl Pharmacol 2014;278:135-147 

  33. Merrifield RC, Wang ZW, Palmer RE, Lead JR. Synthesis and characterization of polyvinylpyrrolidone coated cerium oxide nanoparticles. Environ Sci Technol 2013;47:12426-12433 

  34. Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int 2014;2014: 891-934 

  35. Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, et al. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomed 2011;6:2327-2335 

  36. Naumov A. Review of the world market of rare-earth metals. Russ J Non-Ferrous Met 2008;49(1):14-22 

  37. OECD(Organization for Economic Cooperation and Development) Guidelines for Testing of Chemicals. Test Guideline 453. Combined Chronic Toxicity/Carcinogenicity Studies. 2009 

  38. Oral R, Bustamante P, Warnau M, D'Ambra A, Guida M, et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere 2010;81:194-198 

  39. Pagano G, Guida M, Tommasi F, Oral, R. Health effects and toxicity mechanisms of rare earth elements - Knowledge gaps and research prospects. Ecotoxicol Environ Saf 2015a;115C:40-48 

  40. Pagano G, Aliberti F, Guida M, Oral R, Siciliano A, et al. Human exposures to rare earth elements: State of art and research priorities. Environ Res 2015b;142:215-220 

  41. Pagano G, Guida M, Siciliano A, Oral R, Kocbas F, et al. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environ Res 2016;147:453-60 

  42. Palmer RJ, Butenhoff JL, Stevens JB. Cytotoxicity of the rare earth metals cerium, lanthanum, and neodymium in vitro: comparisons with cadmium in a pulmonary macrophage primary culture system. Environ Res 1987;43(1):142-156 

  43. Pang X, Li D, Peng A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res Int 2002;9:143-148 

  44. Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 2014;16: 255-264 

  45. Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, et al. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 2016;37(7):1192-1198 

  46. Raymond DH, David RJ. Rare Earth Metals. In: Raymond DH, Marie MB, Giffe TJ, editors. Hamilton & Hardy's Industrial Toxicology. 6th ed. Hoboken, New Jersey: John Wiley & Sons; 2015;199-204 

  47. Riano S, Koen Binnemans K. Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem 2015;17:2931-2942 

  48. Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 2013;4(1):12-26 

  49. Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Garcia-Calvo E, et al. Physicochemical characterization and ecotoxicological assessment of $CeO_2$ nanoparticles using two aquatic microorganisms. Toxicol Sci 2011; 119:135-145 

  50. Savel'eva IL. The rare-earth metals industry of Russia: present status, resource conditions of development. Geogr Nat Resour 2011;32(1):65-71 

  51. Selvaraj V, Bodapati S, Murray E, Rice KM, Winston N, et al. Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int J Nanomed 2014;9:1379-1391 

  52. Schluep M, Hageluekenb C, Kuehrc R, Magalinic F, Maurerc C, et al. Recycling- from e waste to resources.(United Nations Environment Programme & United Nations University) [serial online] 2009 [cited 2016 July 16]. Available from: http://www.unep.org/PDF/PressReleases/E-waste_publication_screen_pdf 

  53. Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 2006;342:86-91 

  54. Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 2011;205:105-115 

  55. Takaya M, Toya T, Takata A, Otaki N, Yoshida K, et al. Biological effects of rare earth oxides to respiratory organs. J Aerosol Res 2005;20(3):207-212 

  56. Tong SL, Zhu WZ, Gao ZH, Meng YX, Peng RL, et al. Distribution characteristics of rare earth elements in children's scalp hair from a rare earths mining area in southern China. J Environ Sci Health A Tox Hazard Subst Environ Eng 2004;39:2517-2532 

  57. Turner JH, Claringbold PG, Hetherington EL, Sorby P, Martindale AA. A phase 1 study of samarium-153 ethylenediamine-tetra-methylene phosphonate therapy for disseminated skeletal metastases. J Clin Oncol 1989;7:1926-1931 

  58. USEPA(United States Environmental Protection Agency). Risk assessment guidance for Superfund. Volume I. Human health evaluation manual(Part a), Interim Final. EPA/540/1-89-002 [serial online] 1989 [cited 2016 July 16]. Available from: http://www.epa.gov/oswer/riskassessment/ragsa/ 

  59. USEPA(United States Environmental Protection Agency). Provisional peer-reviewed toxicity values for stable lutetium(CASRN 7439-94-3), National Center for Environmental Assessment. Superfund Health Risk Technical Support Center(STSC) [serial online] 2007 [cited 2016 July 16]. Available from: https://hhpprtv.ornl.gov/quickview/pprtv_papers.php 

  60. USEPA(United States Environmental Protection Agency). Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues. EPA 600/R-12/572 [serial online] 2012 [cited 2016 July 16]. Available from: https://www.epa.gov/ord 

  61. UNEP(United Nations Environment Programme). Recycling rates of metals: A status report, 2011. ISBN No: 978-92-807-3161-3 

  62. Waring PM, Watling RJ. Rare earth deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis? Med J Aust 1990;153:726-730 

  63. Wei B, Li Y, Li H, Yu J, Ye B, et al. Rare earth elements in human hair from a mining area of China. Ecotoxicol Environ Saf 2013;96:118-123 

  64. Wong LL, McGinnis JF. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know. Adv Exp Med Biol 2014;801:821-828 

  65. Wu J, Yang J, Liu Q, Wu S, Ma H, et al. Lanthanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by $Ca^{2+}$ and Bcl-2 family. Biol Trace Elem Res 2013a;152:125-134 

  66. Wu S, Hu C, He M, Chen B, Hu B. Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair. Talanta 2013b;115:342-348 

  67. Yang JH, Liu QF, Wu SW, Zhang LF, Cai Y. Effects of lanthanum chloride on the expression of immediate early genes in the hippocampus of rats. Zhonghua Yu Fang Yi Xue Za Zhi 2011a;45:340-343 

  68. Yang J, Liu Q, Wu S, Zhang L, Qi M, et al. Effects of lanthanum on the phosphorylation of cAMP response element binding protein and expression of immediate early genes in the hippocampal CA3 area of rats. Wei Sheng Yan Jiu 2011b;40:299-303 

  69. Yang J, Liu Q, Qi M, Lu S, Wu S, et al. Lanthanum chloride promotes mitochondrial apoptotic pathway in primary cultured rat astrocytes. Environ Toxicol 2013a;28: 489-497 

  70. Yang J, Liu Q, Wu S, Xi Q, Cai Y. Effects of lanthanum chloride on glutamate level, intracellular calcium concentration and caspases expression in the rat hippocampus. Biometals 2013b;26:43-59 

  71. Zhang DY, Shen XY, Ruan Q, Xu XL, Yang SP, et al. Effects of subchronic samarium exposure on the histopathological structure and apoptosis regulation in mouse testis. Environ Toxicol Pharmacol 2014;37: 505-512 

  72. Zheng L, Yang J, Liu Q, Yu F, Wu S, et al. Lanthanum chloride impairs spatial learning and memory and downregulates NF- ${\kappa}B$ signalling pathway in rats. Arch Toxicol 2013;87:2105-2117 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로