$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

다양한 특성의 은나노물질이 수생생물에 미치는 독성영향평가
Ecotoxicity Assessment of Silver Nanomaterials with Different Physicochemical Characteristics in Diverse Aquatic Organisms 원문보기

환경생물 = Korean journal of environmental biology, v.34 no.3, 2016년, pp.183 - 192  

홍남희 (안전성평가연구소 경남환경독성본부) ,  정윤주 (안전성평가연구소 경남환경독성본부) ,  박준우 (안전성평가연구소 경남환경독성본부)

초록
AI-Helper 아이콘AI-Helper

지금까지 개발된 나노물질 중 은나노물질은 일상 생활제품에 가장 많이 활용된 나노물질 중 하나로 알려져 있고 다양한 경로를 통해 환경에 유입되어 환경 및 인체에 부정적인 영향을 미칠 수 있는 것으로 알려져 있다. 화학물질과 달리 나노물질은 물리화학적 특성에 따라 동일 나노물질이더라도 그 유해성이 다르다고 알려져 있지만 기존 연구들은 다양한 특성을 동일 시험조건에서 평가하기 보다는 하나의 특성에 대해 독성을 보고하는 수준에 그치고 있다. 따라서 기존 연구들의 서로 다른 시험생물, 시험조건, 나노물질 특성 등을 고려할 때 나노물질의 물리화학적 특성에 따른 독성의 체계적인 비교평가가 어려운 한계가 존재한다. 본 연구는 은나노물질의 다양한 물리화학적 특징에 따라 수생생물에 미치는 독성영향을 평가하고자 한다. 대표적인 3종 (어류, 물벼룩, 조류)의 수생생물에 대한 은나노물질의 입자상 크기 (50, 100, 150 nm), 형태 (입자형, 선형), 코팅물질 종류 (PVP, citrate)에 따라 생태독성평가를 진행하였다. 연구결과, 나노 물질의 크기가 작을수록 그리고 입자상 형태보다 선형에서 독성이 비교적 높게 나타났다. 특히 선형 은나노의 경우, 길이에 비례하여 그리고 입자에 비해 비교적 높은 독성을 나타냈다. 반면, 은나노의 코팅물질 종류는 대상 수생생물에 따라 독성의 영향이 다르게 평가되었다. 본 연구는 은나노물질의 다양한 물리화학적 특성에 기인한 독성을 동일한 시험 조건, 시험생물에서 체계적으로 비교 평가하였다는 점에서 의의가 있으며 본 연구결과는 은나노물질의 환경 및 인체 위해성평가 자료로서 활용될 수 있을 뿐 아니라 보다 안전한 은나노물질 소재개발을 위한 과학적 자료로서 활용될 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Silver nanomaterials have been intensively applied in consumer products of diverse industrial sectors because of their strong biocidal properties and reported to be hazardous to aquatic organisms once released in the environment. Nanomaterials including sliver, are known to be different in toxicity ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 기존 연구들의 서로 다른 시험생물, 시험조건, 나노물질 특성 등을 고려할 때 나노물질의 물리화학적 특성에 따른 독성의 체계적인 비교평가가 어려운 한계가 존재한다. 본 연구는 은나노물질의 다양한 물리화학적 특징에 따라 수생생물에 미치는 독성영향을 평가하고자 한다. 대표적인 3종(어류, 물벼룩, 조류)의 수생생물에 대한 은나노물질의 입자상 크기(50, 100, 150 nm), 형태(입자형, 선형), 코팅물질 종류(PVP, citrate)에 따라 생태독성평가를 진행하였다.
  • 본 연구는 크기, 길이, 모양, 코팅종류 등 다양한 물리화학적 특징의 은나노물질이 수생태계를 구성하는 생물에 미치는 영향을 종합적으로 평가하는 것을 목적으로 하였다. 이전 연구들은 주로 단일 생물에 다양한 특징 또는 수 개의 생물에 동일한 특징을 평가한 경우가 많고, 특히 연구들 간 서로 다른 시험생물, 실험조건, 은나노물질 등에서 수행되었기 때문에 은나노물질의 특성에 따른 독성영향 결과들을 체계적으로 비교할 수 없는 단점을 보완하기 위해 진행하였다.
  • 본 연구는 크기, 길이, 모양, 코팅종류 등 다양한 물리화학적 특징의 은나노물질이 수생태계를 구성하는 생물에 미치는 영향을 종합적으로 평가하는 것을 목적으로 하였다. 이전 연구들은 주로 단일 생물에 다양한 특징 또는 수 개의 생물에 동일한 특징을 평가한 경우가 많고, 특히 연구들 간 서로 다른 시험생물, 실험조건, 은나노물질 등에서 수행되었기 때문에 은나노물질의 특성에 따른 독성영향 결과들을 체계적으로 비교할 수 없는 단점을 보완하기 위해 진행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
나노물질의 크기에 따른 독성평가 연구 중 쥐의 폐에 관한 연구는 어떤 결과를 보여줬는가? 2016). 세 가지 크기(5, 23, 154 nm)의 산화티타늄 나노입자에 노출시킨 쥐들 중 가장 작은 입자에 노출 된 쥐의 폐에서 염증이 더 심하게 유도되었으며(Kobayashi et al. 2009), 은나노입자에 노출된 제브라피쉬의 경우, 10 nm 사이즈의 입자에서는 활동저하를 보였지만, 반대로 50 nm 사이즈의 입자에서는 과잉행동을 나타내기도 하였다 (Powers et al.
은나노물질이 가장 널리 소비되고 있는 이유는? 2011; Baetke et al. 2015) 그중에서 항균작용의 탁월성 때문에 사용되는 은나노물질은 가장 널리 소비되고 있는 나노물질 중 하나로 알려져 있다 (Benn and Weterhoff 2008; Eckhardt et al. 2013).
은나노제품의 소비 증가는 어떤 결과를 가져오는가? 2013). 이러한 은나노제품의 소비증가는 결국 환경으로 대량 유입되어 직간접적으로 인간과 생태계에 영향을 미칠 수 있는 것으로 알려져 있다(Klaine et al. 2008;Vecitis et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (42)

  1. Artal MC, RD Holtz, F Kummrow, OL Alves and A Umbuzeiro Gde. 2013. The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. Environ. Toxicol. Chem. 32:908-912. 

  2. Aruoja V, I Kurvet, HC Dubourguier and A Kahru. 2004. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay. Environ. Toxicol. 19:396-402. 

  3. Asghari S, SA Johari, JH Lee, YS Kim, YB Jeon, HJ Choi, MC Moon and IJ Yu. 2012. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J. Nanobiotechnology 10:14. 

  4. Baetke SC, T Lammers and F Kiessling. 2015. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88:20150207. 

  5. Bang SH, TH Le, SK Lee, P Kim, JS Kim and Min JH. 2011. Toxicity Assessment of Titanium(IV) Oxide Nanopartkcle Using Daphnia magna (water Flea). Environ. Health Toxicol. 26: e2011002. 

  6. Benn TM and P Westerhoff. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42:4133-4139. 

  7. Bian SW, IA Mundunkotuwa, T Rupasinghe and VH Grassian. 2011. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 27:6059-6068. 

  8. Carlson C, SM Hussain, AM Schrand, LK Braydich-Stolle, KL Hess, RL Jones and JJ Schlager. 2008. Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. J. Phys. Chem. B. 112:13608-13619. 

  9. Chae Y and YJ An. 2016. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat. Toxicol. 173:94-104. 

  10. Cupi D, NB Hartmann and A Baun. 2016. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol. Environ. Saf. 127:144-152. 

  11. Eckhardt S, P Brunetto, J Cganon, M Priebe, B Ciese and K Fromm. 2013. Nanobiosilver: its interations with peptides and bacteria, and its uses in medicine. Chem. Rev. 113:4708-4754. 

  12. El Badawy AM, KG Scheckel, MT Suidan and TM Tolaymat. 2012. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. 429:325-331. 

  13. El Badawy AM, TP Luxton, RG Silva, KG Scheckel, MT Suidan and TM Tolaymat. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver of NPs suspensions, Environ. Sci. Technol. 44:1260-1266. 

  14. Handy RD, F von der Kammer, JR Lead, M Hassellov, R Owen and M Crane. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287-314. 

  15. Klaine SJ, PJ Alvarez, GE Batley, TF Fernandes, RD Handy, DY Lyon, S Mahendera, MJ Mclaughlin and JR Lead. 2008. Nanometerials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27:1825-1851. 

  16. Kobayashi N, M Naya, S Endoh, J Maru, K Yamamoto and J Nakanishi. 2009. Comparative pulmonary toxicity study of nano- $TiO_2$ particles of different sizes and agglomerations inrats: Different short- and long term post-instillation results. Toxicology 264:110-118. 

  17. Kwok KW, M Auffan, AR Badireddy, CM Nelson, MR Wiesner, A Chilkoti, J Liu, SM Marinakos and DE Hinton. 2012. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effects of coating materials. Aquat. Toxicol. 120:59-66. 

  18. Langley DP, G Giustim, M Lagrange, R Collins, C Jimenez, Y Brechet and D Bellet. 2014. Silver nanowire networks: Physical properties and potential integration in solar cells. Sol. Energy Mat. Sol. C. 125:318-324. 

  19. Lee JH, YS Kim, KS Song, HR Ryu, JH Sung, JD Park, HM Park, NW Song, BS Shin, D Marshak, K Ahn, JE Lee and IJ Yu. 2013, Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10:36. 

  20. Liu J and RH Hurt. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44:2169-2175. 

  21. Meng F and S Jin. 2011. The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett. 12:234-239. 

  22. Meredith AN, B Harper and SL Harper. 2016. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron-and nano sized capsules. Environ. Int. 86:68-74. 

  23. Newton KM, HL Puppala, CL Kitchens, VL Colvin and SJ Klaine. 2013. Silver nanoparticles toxicity to Daphnis magna is a function of dissolved silver concentration. Environ. Toxicol. Chem. 32:2356-2364. 

  24. OECD. OECD Test Guidelines for testing of chemicals. Guideline 201: Freshwater Algae and Cyanobacteria, Growth Inhibition Test. adopted: March 2006. 

  25. OECD. OECD Test Guidelines for testing of chemicals. Guideline 202: Daphnia sp., Acute immobilisation Test. adopted: April 2004. 

  26. OECD. OECD Test Guidelines for testing of chemicals. Guideline 203: Fish, Acute Toxicity Test. adopted: July 1992. 

  27. Park JW, JH Oh, WK Kim and SK Lee. 2014. Toxicity of Citrate-Coated Silver Nanoparticles Differs According to Method of Suspension Preparation. Bull. Environ. Contam. Toxicol. 93:53-59. 

  28. Park MV, AM Neigh, JP Vermeulen, LJ de la Fonteyne, HW Verharen, JJ Briede, H van Loveren and WH de Jong. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanopartcles. Biomaterials 32:9810-9817. 

  29. Powers CM, TA Slotkin, FJ Seidler, AR Badireddy and S Padilla. 2011. Siver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicol. Teratol. 33:708-714. 

  30. Rahaman Mds, CD Vecitis and M Elimelech. 2012. Electrochemical cabon nanotube filter performance towards virus removal and inactivation in the presence of natural organic matter. Environ. Sci. Technol. 46:1556-1564. 

  31. Ribeiro F, JA Gallego-Urrea, K Jurkschat and A Crossley, Hassellov M, Taylor C, Soares AM, Loureiro S. 2014. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466-467:232-241. 

  32. Romer I, TA White, M Baalousha, K Chipman, MR Viant and JR Lead. 2011. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr A. 1218:4226-4233. 

  33. Schwab F, TD Burcheli, LP Lukhele, A Magrez, B Nowack, L Sigg and K Knauer. 2011. Are carbon nanotube effects on grees algae caused by shading and agglomeration? Environ. Sci. Technol. 45:6136-6144. 

  34. Silva RM, J Xu, C Saiki, DS Anderson, LM Franzi, CD Vulpe, B Gilbert, LS Van Winkle and KE Pinkerton. 2014. Short versus long silver nanowiers: a comparison of in vivo pulmonary effects post instillation. Part. Fibre Toxicol. 11:52. 

  35. Silva T, LR Pokhrel, B Dubey, TM Tolaymat, KJ Maier and X Liu. 2014. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci. Total Environ. 468-469:968-976. 

  36. Sohn EK, SA Johari, JK Kim, E Kim, JH Lee, YS Chung and IJ Yu. 2015. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res. Int. 2015:893049. 

  37. Sund J, H Alenius, M Vippola, K Savolainen and A Puustinen. 2011. Protenomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. ACS Nano 5:4300-4309. 

  38. Tejamaya M, I Roemer, RC Merrifield and JR Lead. 2012. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 46:7011-7017. 

  39. Vecitis CD, KR Zodrow, S Kang and M Elimelech. 2010. Electronic structure-dependent Bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471-5479. 

  40. Wang X, Z Ji, CH Chang, H Zhang, M Wang, YP Liao, S Lin, H Meng, R Li, B Sun, LV Winkle, KE Pinkerton, JI Zink, T Xia and AE Nel. 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385-398. 

  41. Wiench K, W Wohlleben, V Hisgen, K Radke, E Salinas, S Zok and R Landsiedel. 2009. Acute and Chronic effects of nano- and non-nono-scale $TiO_2$ and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnis magna. Chemospere 76:1356-1365. 

  42. Zhang T, L Wang, Q Chen and C Chen. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 55:283-291. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로