$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biological Potential of Bioorganic Fertilizer Fortified with Bacterial Antagonist for the Control of Tomato Bacterial Wilt and the Promotion of Crop Yields 원문보기

Journal of microbiology and biotechnology, v.26 no.10, 2016년, pp.1755 - 1764  

Wu, Kai (National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University) ,  Fang, Zhiying (National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University) ,  Wang, Lili (Ningbo Academy of Agricultural Science) ,  Yuan, Saifei (National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University) ,  Guo, Rong (National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University) ,  Shen, Biao (National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University) ,  Shen, Qirong (National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University)

Abstract AI-Helper 아이콘AI-Helper

The application of Bacillus sp. in the biological control of plant soilborne diseases has been shown to be an environmentally friendly alternative to the use of chemical fungicides. In this study, the effects of bioorganic fertilizer (BOF) fortified with Bacillus amyloliquefaciens SQY 162 on the sup...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • Based on the biocontrol efficacy of BOF on tomato bacterial wilt, the influence of BOF on the activities of tomato defense enzymes (SOD, CAT, and POD) and on the tomato MDA content were evaluated. The results showed that the SOD enzyme activity was 9.
  • Strain SQY 162 was previously found to effectively suppress tobacco bacterial wilt in the greenhouse and in the field [31]. Therefore, the objectives of this study were (i) to evaluate the potential biocontrol abilities of the strain towards tomato bacterial wilt, and (ii) to investigate its mode of action.

이론/모형

  • Production of siderophore by SQY 162 was determined according to the method of Alexander and Zuberer [3]. After incubation at 28℃ for 3 days, siderophore production was estimated by a change in the color from blue to orange.
  • qRT-PCR was performed with an ABI 7500 system under the following conditions: cDNA was denatured for 10 sec at 95oC, followed by 40 cycles of 5 sec at 95℃ and 34 sec at 60℃. The qRT-PCR data were analyzed according to the 2ˉΔΔCT method described by Livark and Schmittgen [20].
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Adam M, Heuer H, Hallmann J. 2014. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9: e90402. 

  2. Ahn P, Chung HS, Lee YH. 1998. Vegetative compatibility groups and pathogenicity among isolates of Fusarium oxysporum f. sp. cucumerinum . Plant Dis. 82: 244-246. 

  3. Alexander D, Zuberer D. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fert. Soils 12: 39-45. 

  4. Bais HP, Fall R, Vivanco JM. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319. 

  5. Chen C, Belanger RR, Benhamou N, Paulitz TC. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum . Physiol. Mol. Plant Pathol. 56: 13-23. 

  6. Chen X, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, et al. 2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140: 27-37. 

  7. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. 

  8. Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R, et al. 2013. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8: e68818. 

  9. Elphinstone J, Hennessy J, Wilson J, Stead D. 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 26: 663-678. 

  10. Fravel D. 2005. Commercialization and implementation of biocontrol 1. Annu. Rev. Phytopathol. 43: 337-359. 

  11. Gamliel A, Austerweil M, Kritzman G. 2000. Non-chemical approach to soilborne pest management - organic amendments. Crop Prot. 19: 847-853. 

  12. García-Limones C, Hervás A, Navas-Cortés JA, Jiménez-Díaz RM, Tena M. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea ( Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris . Physiol. Mol. Plant Pathol. 61: 325-337. 

  13. Glickmann E, Dessaux Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796. 

  14. Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX, Sun PH. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Controls 29: 66-72. 

  15. Hayward A. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum . Annu. Rev. Phytopathol. 29: 65-87. 

  16. Hendrick CA, Sequeira L. 1984. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum . Appl. Environ. Microbiol. 48: 94-101. 

  17. Karadeniz A, Topcuoğlu Ş, Inan S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22: 1061-1064. 

  18. King SR, Davis AR, Liu W, Levi A. 2008. Grafting for disease resistance. HortScience 43: 1673-1676. 

  19. Kloepper JW, Ryu CM, Zhang S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. 

  20. Livark K, Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C (T)) method. Methods 25: 402-408. 

  21. Milling A, Babujee L, Allen C. 2011. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 6: e15853. 

  22. Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM. 2007. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice ( Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol. 164: 157-167. 

  23. Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe Interact. 24: 533-542. 

  24. Pérez-García A, Romero D, De Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193. 

  25. Scherf JM, Milling A, Allen C. 2010. Moderate temperature fluctuations rapidly reduce the viability of Ralstonia solanacearum race 3, biovar 2, in infected geranium, tomato, and potato plants. Appl. Environ. Microbiol. 76: 7061-7067. 

  26. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, et al. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742-4751. 

  27. Tan S, Dong Y, Liao H, Huang J, Song S, Xu Y, Shen Q. 2013. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Manag. Sci. 69: 1245-1252. 

  28. Thaler JS, Owen B, Higgins VJ. 2004. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol. 135: 530-538. 

  29. Weng J, Wang Y, Li J, Shen Q, Zhang R. 2013. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl. Microbiol. Biotechnol. 97: 8823-8830. 

  30. Wu HS, Yang XN, Fan JQ, Miao WG, Ling N, Xu YC, et al. 2009. Suppression of Fusarium wilt of watermelon by a bioorganic fertilizer containing combinations of antagonistic microorganisms. BioControl 54: 287-300. 

  31. Wu K, Yuan S, Wang L, Shi J, Zhao J, Shen B, Shen Q. 2014. Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol. Fert. Soils 50: 961-971. 

  32. Yuan S, Wang L, Wu K, Shi J, Wang M, Yang X, et al. 2014. Evaluation of Bacillus -fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Appl. Soil Ecol. 75: 86-94. 

  33. Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, et al. 2011. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344: 87-97. 

  34. Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y. 2011. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl. Soil Ecol. 47: 67-75. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로