$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

소규모 사구 지역 바람-식생모델 적용성 분석
Applicability of Wind-Vegetation Model in Small Scale Sand Dunes 원문보기

한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, v.35 no.6, 2017년, pp.545 - 552  

최석근 (Dept. of Civil Engineering, Chungbuk National University) ,  최재완 (Dept. of Civil Engineering, Chungbuk National University) ,  박상욱 (Dept. of Civil Engineering, Chungbuk National University) ,  정성혁 (Terrapix) ,  이승기 (Terrapix)

초록
AI-Helper 아이콘AI-Helper

풍성사구는 지표, 바람과 식생간의 상호 작용에 의해 유지${\cdot}$발달되는 대표적인 사구이다. 이러한 사구의 변형을 예측하는 모형을 개발하는 것은 토지 황폐화와 같은 지형 경광의 이해와 관리의 효율성을 높이는데 매우 중요하다. 하지만 기존의 모형에서는 사구의 장기 거동에 대한 연구와 이를 이용한 실제 지형 적용에 관한 연구는 미비한 실정이다. 따라서, 본 연구에서는 식생을 고려한 바람-식생 모형을 실제 지형에 적용하고, 장기 거동을 실제 데이터와 비교하여 바람-식생 모형의 적용성을 분석하였다. 분석을 통해서 바람-식생 모형과 무인항공기 데이터를 이용하는 방법이 경계면을 제외하고 실제 사구지형의 변화와 최대 1m 내외의 오차로 나타나 장기 거동 분석에 효과적인것을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

Aeolian dunes are typical sand dunes which are maintained and developed by interactions of earth surface, wind and vegetation. Developing a model which can predict the changing phenomena of these sand dunes is vital in enhancing the efficiency of understanding and management of terrains such as land...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서, 연구의 목적은 식생-바람 모형을 실제 사구에 적용하고 사구의 지형변화를 재현하는데 중점을 둔다. 이러한 연구는 풍성사구 지형변화의 핵심 요소를 이해할 수 있으며,모형을 통한 사구의 관리 및 유지 방안에 기여할 것으로 판단된다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
사구란 무엇인가? 사구는 바람으로 운반된 모래가 쌓여서 만들어진 언덕이며, 건조한 지역에서 발생하는 풍성사구(Aeoline Dunes)는 지표 기복, 바람과 식생 간의 상호 작용에 의해 유지∙발달되는대표적 사구이다(Baas and Nield, 2007; Wiggs et al., 2012;Bishop et al.
바람 침식 모델만을 이용하여 사구 장기 거동성을 예측하는데 제한이 생기는 이유는 무엇인가? , 2013). 풍성사구의 변화는 모래의 이동이 가능한 일정 이상의 바람에 의해 사구의 둔덕을 형성하며, 형성된 둔덕은 다시 바람의 흐름에 영향을 받는다. 바람이 직접적으로 부딪치는 사면에서는 풍속이 빨라지고 둔덕의 뒤에 형성되는 바람그늘에서는 풍속이 감소한다(Wiggs, 2001). 이러한 바람만을 고려한 바람 침식 모델은 복잡성을 단순화하여 사구의 형성과정을 이해하는데 도움이 되었지만, 실제 지형에서는 바람뿐만이 아니라 사구에 존재하는 식생이 사구 장기 거동에 큰 영향을 가지고 있다. 따라서, 바람 침식 모델만을 이용하여 사구 장기 거동성을 예측하는데 한계가 있어 실제 지형에 적용하기에는 어렵다(Thomas et al.
풍성사구란 무엇인가요? 사구는 바람으로 운반된 모래가 쌓여서 만들어진 언덕이며, 건조한 지역에서 발생하는 풍성사구(Aeoline Dunes)는 지표 기복, 바람과 식생 간의 상호 작용에 의해 유지∙발달되는대표적 사구이다(Baas and Nield, 2007; Wiggs et al., 2012;Bishop et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (30)

  1. Baas, A.C. and Nield, J.M. (2007), Modelling vegetated dune landscapes, Geophysical Research Letters, Vol. 34, No. 6, pp. 1-5. 

  2. Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V., and Lejeune, O. (2006), Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems, Journal of Ecology, Vol. 94, No. 3, pp. 537-547. 

  3. Beon, M.S. and Oh, H.K. (2006), Analysis of the Change of the Flora and Vegetation Association of Ui Island Sand Dune, Korean Journal of Environment and Ecology, Vol. 20, No. 1, pp. 41-51. (in Korean with English abstract) 

  4. Bishop, S.R., Momiji, H., Carretero-Gonzalez, R., and Warren, A. (2002), Modelling desert dune fields based on discrete dynamics, Discrete Dynamics in Nature and Society, Vol. 7, No. 1, pp. 7-17. 

  5. Choi, S.K., Lee, S.K., Jung, S.H., Choi, J.W., Choi, D.Y., and Chun, S.J. (2016), Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 4, pp. 431-441. 

  6. Choi, S.K., Kim, G.H., Choi, J.W., Lee, S.K., Jung, S.H., Choi, D.Y., and Chun, S.J. (2017), UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 1, pp. 11-22. 

  7. D'Odorico, P., Bhattachan, A., Davis, K.F., Ravi, S., and Runyan, C.W. (2013), Global desertification: drivers and feedbacks, Advances in Water Resources, Vol. 51, No. 1, pp. 326-344. 

  8. De Castro, F. (1995), Computer simulation of the dynamics of a dune system, Ecological Modelling, Vol. 78, No. 3, pp. 205-217. 

  9. Gillette, D.A., Herrick, J.E., and Herbert, G.A. (2006), Wind characteristics of mesquite streets in the northern Chihuahuan Desert, New Mexico, USA, Environmental Fluid Mechanics, Vol. 6, No. 3, pp. 241-275. 

  10. Katsuki, A., Nishimori, H., Endo, N., and Taniguchi, K. (2005), Collision dynamics of two barchan dunes simulated using a simple model, Journal of the Physical Society of Japan, Vol. 74, No. 2, pp. 538-541. 

  11. Klose, M. and Shao, Y. (2012), Stochastic parameterization of dust emission and application to convective atmospheric conditions, Atmospheric Chemistry and Physics, Vol. 12, No. 1, pp. 3263-3293. 

  12. Kocurek, G., Ewing, R.C., and Mohrig, D. (2010), How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions, Earth Surface Processes and Landforms, Vol. 35, No. 1, pp. 51-63. 

  13. Lancaster, N., Nickling, W.G., and Gillies, J.A. (2010), Sand transport by wind on complex surfaces: Field studies in the McMurdo Dry Valleys, Antarctica, Journal of Geophysical Research: Earth Surface, Vol. 115, No. 3, pp. 1-10. 

  14. Leenders, J.K., Sterk, G., and Van Boxel, J.H. (2011), Modelling wind-blown sediment transport around single vegetation elements, Earth Surface Processes and Landforms, Vol. 36, No. 9, pp. 1218-1229. 

  15. Li, J., Okin, G.S., Herrick, J.E., Belnap, J., Miller, M.E., Vest, K., and Draut, A.E. (2013), Evaluation of a new model of aeolian transport in the presence of vegetation, Journal of Geophysical Research: Earth Surface, Vol. 118, No. 1, pp. 288-306. 

  16. Liaw, A. and Wiener, M. (2002), Classification and regression by randomForest, R news, Vol. 2, No. 3, pp. 18-22. 

  17. Mayaud, J.R., Bailey, R.M., and Wiggs, G.F. (2017), A coupled vegetation/sediment transport model for dryland environments, Journal of Geophysical Research: Earth Surface, Vol. 122, No. 4, pp. 875-900. 

  18. Mayaud, J.R., Wiggs, G.F., and Bailey, R.M. (2016), Dynamics of skimming flow in the wake of a vegetation patch, Aeolian Research, Vol. 22, No. 1, pp. 141-151. 

  19. Momiji, H., Carretero-Gonzalez, R., Bishop, S.R., and Warren, A. (2000), Simulation of the effect of wind speedup in the formation of transverse dune fields, Earth Surface Processes and Landforms, Vol. 25, No. 8, pp. 905-918. 

  20. Nield, J.M. and Baas, A.C. (2008), Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach, Earth Surface Processes and Landforms, Vol. 33, No. 5, pp. 724-740. 

  21. Nishimori, H., Yamasaki, M., and Andersen, K.H. (1998), A simple model for the various pattern dynamics of dunes, International Journal of Modern Physics, Vol. 12, No. 3, pp. 257-272. 

  22. Okin, G.S. and Gillette, D.A. (2001), Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes, Journal of Geophysical Research: Atmospheres, Vol. 106, No. 9, pp. 9673-9683. 

  23. Pelletier, J.D., Mitasova, H., Harmon, R.S., and Overton, M. (2009), The effects of interdune vegetation changes on eolian dune field evolution: a numerical-modeling case study at Jockey's Ridge, North Carolina, USA, Earth Surface Processes and Landforms, Vol. 34, No. 9, pp. 1245-1254. 

  24. Stallins, J.A. (2005), Stability domains in barrier island dune systems, Ecological Complexity, Vol. 2, No. 4, pp. 410-430. 

  25. Stallins, J.A. and Parker, A.J. (2003), The influence of complex systems interactions on barrier island dune vegetation pattern and process, Annals of the Association of American Geographers, Vol. 93, No. 1, pp. 13-29. 

  26. Suter-Burri, K., Gromke, C., Leonard, K.C., and Graf, F. (2013), Spatial patterns of aeolian sediment deposition in vegetation canopies: Observations from wind tunnel experiments using colored sand, Aeolian Research, Vol. 8, No. 1, pp. 65-73. 

  27. Thomas, D.S.G., M. Knight, and G.F.S. Wiggs. (2005), Remobilization of southern African desert dune systems by twenty-first century global warming, Nature, Vol. 435, No. 7046, pp. 1218-1221. 

  28. Wang, X., Yang, Y., Dong, Z., and Zhang, C. (2009), Responses of dune activity and desertification in China to global warming in the twenty-first century, Global and Planetary Change, Vol. 67, No. 3, pp. 167-185. 

  29. Werner, B.T. (1995), Eolian dunes: computer simulations and attractor interpretation, Geology, Vol. 23, No. 12, pp. 1107-1110. 

  30. Wiggs, G.F.S. and Weaver, C.M. (2012), Turbulent flow structures and aeolian sediment transport over a barchan sand dune, Geophysical research letters, Vol. 39, No. 5, pp. 1-7. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로