$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

배출가스의 질소산화물과 이산화황 동시 저감 기술
Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas 원문보기

공업화학 = Applied chemistry for engineering, v.28 no.6, 2017년, pp.607 - 618  

박현우 (고등기술연구원 플랜트엔지니어링센터 에너지환경연구팀) ,  엄성현 (고등기술연구원 플랜트엔지니어링센터 에너지환경연구팀)

초록
AI-Helper 아이콘AI-Helper

석탄화력발전소를 포함한 다양한 산업설비에서 유해 대기오염물질이 배출되고 있으며, 이러한 오염물질은 인체 건강과 자연 생태계에 영향을 준다. 특히, 질소산화물($NO_x$)와 이산화황($SO_2$)은 인체 건강에 악영향을 주는 미세먼지($PM_{2.5}$) 형성에 원인물질로 알려져 있다. 이러한 $NO_x$$SO_2$ 배출을 저감하기 위해서 선택적 촉매 환원(SCR)과 습식 탈황 공정(WFGD)으로 결합된 혼합 시스템이 사용되고 있으나, 높은 설치비용 및 운전비용을 필요로 하며, 유지보수의 문제점, 기술적인 한계점을 가지고 있다. 최근에 이러한 혼합 시스템을 대체하기 위한 $NO_x$, $SO_2$ 동시 저감 기술이 연구되고 있으며, 제안된 기술들은 흡수, 고도 산화(AOPs), 저온 플라즈마(NTP), 전자 빔(EB) 등이 있다. 이러한 기술들은 강한 수용성 산화제 및 산화력을 가진 화학활성종에 의한 $NO_x$, $SO_2$$HNO_3$, $H2SO_4$ 형태로의 산화 반응, 기-액 계면에서 $HNO_3$$H2SO_4$ 흡수 반응, 화학 첨가제에 의한 중화 반응을 기본으로 하고 있다. 본 논문에서는 각각의 동시 저감공정에 대한 기술적인 특징과 대용량 처리 공정 응용을 위한 향후 전망을 정리하였다.

Abstract AI-Helper 아이콘AI-Helper

Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • ) in a single or hybrid compact system based on the technologies of absorption, non-thermal plasma (NTP), advanced oxidation processes (AOPs), and electron beam (EB) to apply the off-gas cleaning. The purpose of this article is to summarize the abatement technologies for simultaneous DeNOx and DeSOx from the flue gas and to provide the knowledge and technological pros and cons of each method.
본문요약 정보가 도움이 되었나요?

참고문헌 (68)

  1. The World Bank Group, Data for fossil fuel energy consumption, www.worldbank.org (2014). 

  2. J. Ye, J. Shang, Q. Li, W. Xu, J. Liu, X. Feng, and T. Zhu, The use of vacuum ultraviolet irradiation to oxidize $SO_2$ and $NO_x$ for simultaneous desulfurization and denitrification, J. Hazard. Mater., 271, 89-97 (2014). 

  3. W. Sun, S. Ding, S. Zeng, S. Su, and W. Jiang, Simultaneous absorption of $NO_x$ and $SO_2$ from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone, J. Hazard. Mater., 192, 124-130 (2011). 

  4. H. W. Park, S. Choi, and D. W. Park, Simultaneous treatment of NO and $SO_2$ with aqueous $NaClO_2$ solution in a wet scrubber combined with a plasma electrostatic precipitator, J. Hazard. Mater., 285, 117-126 (2015). 

  5. J. Zhang, R. Zhang, X. Chen, M. Tong, W. Kang, S. Guo, Y. Zhou, and J. Lu, Simultaneous removal of NO and $SO_2$ from flue gas by ozone oxidation and NaOH absorption, Ind. Eng. Chem. Res., 53, 6450-6456 (2014). 

  6. K. Skalaska, J. S. Miller, and S. Ledakowicz, Trends in $NO_x$ abatement: Review, Sci. Total Environ., 408, 3976-3989 (2010). 

  7. P. Fang, C. Cen, X. Wang, Z. Tang, Z. Tang, and D. Chen, Simultaneous removal of $SO_2$ , NO and $Hg^0$ by wet scrubbing using urea + $KMnO_4$ solution, Fuel Process. Technol., 106, 645-653 (2013). 

  8. F. Xu, Z. Luo, W. Cao, P. Wang, B. Wei, X. Gao, M. Fang, and K. Cen, Simultaneous oxidation of NO, $SO_2$ and $Hg^0$ from flue gas by pulsed corona discharge, J. Environ. Sci., 21, 328-332 (2009). 

  9. Z. Wang, J. Zhou, Y. Zhu, Z. Wen, J. Liu, and K. Cen, Simultaneous removal of $NO_x$ , $SO_2$ and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results, Fuel Process. Technol., 88, 817-823 (2007). 

  10. A. A. Patsias, W. Nimmo, B. M. Gibbs, and P. T. Williams, Calcium-based sorbents for simultaneous $NO_x$ / $SO_x$ reduction in a down-fired furnace, Fuel, 84, 1864-1873 (2005). 

  11. L. Guo, Y. Shu, and J. Gao, Present and future development of the flue gas control technology of the $DeNO_x$ in the world, Energy Procedia, 17, 397-403 (2012). 

  12. L. Wang, W. Zhao, and Z. Wu, Simultaneous absorption of NO and $SO_2$ by $Fe^{II}EDTA$ combined with $Na_2SO_3$ solution, Chem. Eng. J., 132, 227-232 (2007). 

  13. Y. Zhao, P. Xu, D. Fu, J. Huang, and H. Yu, Experimental study on simultaneous desulfurization and denitrification based on highly active absorbent, J. Environ. Sci. (China), 18, 281-286 (2006). 

  14. Q. Zhang, Removal Technology of $SO_2$ and $NO_x$ in Flue Gas and Engineering Instances, Chemical Industry Press, Beijing, China (2002). 

  15. M. M. Barbooti, N. K. Ibraheem, and A. H. Ankosh, Removal of nitrogen dioxide and sulfur dioxide from air streams by absorption in urea solution, J. Environ. Prot., 2, 175-185 (2011). 

  16. P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen, and Z. Chen, Simultaneous removal of $SO_2$ and $NO_x$ by wet scrubbing using urea solution, Chem. Eng. J., 168, 52-59 (2011). 

  17. A. Pourmohammadbagher, E. Jamshidi, H. A. Ebrahim, B. Dabir, and M. M. Zeinabad, Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber, Chem. Eng. Process., 50, 773-779 (2011). 

  18. T. W. Chien and H. Chu, Removal of $SO_2$ and NO from flue gas by wet scrubbing using an aqueous $NaClO_2$ solution, J. Hazard. Mater., B80, 43-57 (2000). 

  19. H. K. Lee, B. R. Dechwal, and K. S. Yoo, Simultaneous removal of $SO_2$ and NO by sodium chlorite solution in wetted-wall column, Korean J. Chem. Eng., 22, 208-213 (2005). 

  20. A. Pourmohammadbagher, E. Jamshidi, H. A. Ebrahim, and S. Dabir, Study on simultaneous removal of $NO_x$ and $SO_2$ with $NaClO_2$ in a novel swirl wet system, Ind. Eng. Chem. Res., 50, 8278-8284 (2011). 

  21. M. K. Mondal and V. R. Chelluboyana, New experimental results of combined $SO_2$ and NO removal from simulated gas stream by NaClO as low-cost absorbent, Chem. Eng. J., 217, 48-53 (2013). 

  22. D. S. Jin, B. R. Deshwal, Y. S. Park, and H. K. Lee, Simultaneous removal of $SO_2$ and NO by wet scrubbing using aqueous chlorine dioxide solution, J. Hazard. Mater., B135, 412-417 (2006). 

  23. D. Xia, C. He, L. Zhu, Y. Huang, H. Dong, M. Su, M. A. Asi, and D. Bian, A novel wet-scrubbing process using Fe(VI) for simultaneous removal of $SO_2$ and NO, J. Environ. Monit., 13, 864-870 (2011). 

  24. Y. Zhao, Y. Han, T. Guo, and T. Ma, Simultaneous removal of $SO_2$ , NO and $Hg^0$ from flue gas by ferrate (VI) solution, Energy, 67, 652-658 (2014). 

  25. Y. G. Adewuyi and N. Y. Sakyi, Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature, Ind. Eng. Chem. Res., 52, 11702-11711 (2013). 

  26. C. V. Raghunath, P. Pandey, R. Saini, and M. K. Mondal, Absorption of $SO_2$ and NO through an integrative process with a cost-effective aqueous oxidant, Perspect. Sci., 8, 699-701 (2016). 

  27. Y. Zhao, R. Hao, T. Wang, and C. Yang, Follow-up research for integrative process of pre-oxidation and post-absorption cleaning flue gas: Absorption of $NO_2$ , NO and $SO_2$ , Chem. Eng. J., 273, 55-65 (2015). 

  28. I. Liemans and D. Thomas, Simultaneous $NO_x$ and $SO_x$ reduction from oxyfuel exhaust gases using acidic solutions contining hydrogen peroxide, Energy Procedia, 37, 1348-1356 (2013). 

  29. N. D. Hutson, R. Kryzyzynska, and R. K. Srivastava, Simultaneous removal of $SO_2$ , $NO_x$ , and Hg from coal flue gas using a $NaClO_2$ -enhanced wet scrubber, Ind. Eng. Chem. Res., 47, 5825-5831 (2008). 

  30. R. Hao, Y. Zhang, Z. Wang, Y. Li, B. Yuan, X. Mao, and Y. Zhao, An advanced wet method for simultaneous removal of $SO_2$ and NO from coal-fired flue gas by utilizing a complex absorbent, Chem. Eng. J., 307, 562-571 (2017). 

  31. Y. Zhao, R. Hao, and M. Qi, Integrative process of peroxidation and absorption for simultaneous removal of $SO_2$ , NO and $Hg^0$ , Chem. Eng. J., 269, 159-167 (2015). 

  32. Y. Zhao, T. Guo, Z. Chen, and Y. Du, Simultaneous removal of $SO_2$ and NO using $M/NaClO_2$ complex absorbent, Chem. Eng. J., 160, 42-47 (2010). 

  33. Y. Zhao, R. Hao, B. Yuan, and J. Jiang, Simultaneous removal of $SO_2$ , NO and $Hg^0$ through an integrative process utilizing a cost-effective complex oxidant, J. Hazard. Mater., 301, 74-83 (2016). 

  34. C. V. Raghunath and M. K. Mondal, Experimental scale multi component absorption of $SO_2$ and NO by $NH_3$ /NaClO scrubbing, Chem. Eng. J., 314, 537-547 (2017). 

  35. Y. Zhao, X. Wen, T. Guo, and J. Zhou, Desulfurization and denitrogenation from flue gas using Fenton reagent, Fuel Process. Technol., 128, 54-60 (2014). 

  36. S. Wang, Q. Zhang, G. Zhang, Z. Wang, and P. Zhu, Effects of sintering flue gas properties on simultaneous removal of $SO_2$ and NO by ammonia-Fe(II)EDTA absorption, J. Energy Inst., 90, 522-527 (2017) 

  37. Y. Zhao, R. Hao, F. Xue, and Y. Feng, Simultaneous removal of multi-pollutants from flue gas by a vaporized composite absorbent, J. Hazard. Mater., 321, 500-508 (2017). 

  38. Y. Zhao, R. Hao, Q. Guo, and Y. Feng, Simultaneous removal of $SO_2$ and NO by a vaporized enhanced-Fenton reagent, Fuel Process. Technol., 137, 8-15 (2015). 

  39. T. W. Chien, H. Chu, and H. T. Hsueh, Kinetic study on absorption of $SO_2$ and $NO_x$ with acidic $NaClO_2$ solutions using the spraying column, J. Environ. Eng., 129, 967-974 (2003). 

  40. Y. Liu, Q. Wang, Y. Yin, J. Pan, and J. Zhang, Advanced oxidation removal of NO and $SO_2$ from flue gas by using ultraviolet/ $H_2O_2$ /NaOH process, Chem. Eng. Res. Des., 92, 1907-1914 (2014). 

  41. R. Hao, Y. Zhao, B. Yuan, S. Zhou, and S. Yang, Establishment of a novel advanced oxidation process for economical and effective removal of $SO_2$ and NO, J. Hazard. Mater., 318, 224-232 (2016). 

  42. Y. Liu, J. Zhang, C. Sheng, Y. Zhang, and L. Zhao, Simultaneous removal of NO and $SO_2$ from coal-fired flue gas by UV/ $H_2O_2$ advanced oxidation process, Chem. Eng. J., 162, 1006-1011 (2010). 

  43. Y. Sun, E. Zwolinska, and A. G. Chmielewski, Abatement technologies for high concentrations of $NO_x$ and $SO_2$ removal from exhaust gases: A review, Environ. Sci. Technol., 46, 119-142 (2016). 

  44. B. M. Obradovic, G. B. Sretenovic, and M. M. Kuraica, A dual- use of DBD plasma for simultaneous $NO_x$ and $SO_2$ removal from coal-combustion flue gas, J. Hazard. Mater., 185, 1280-1286(2011). 

  45. C. J. Yu, F. Xu, Z. Y. Luo, W. Cao, B. Wei, and X. Gao, M. X. Fang, and K. F. Cen, Influences of water vapor and fly ash addition on NO and $SO_2$ gas conversion efficiencies enhanced by pulsed corona discharge, J. Electrostat., 67, 829-834 (2009). 

  46. T. Kuroki, M. Takahashi, M. Okubo, and T. Yamamoto, Singlestage plasma-chemical process for particulates, $NO_x$ , and $SO_x$ simultaneous removal, IEEE Trans. Ind. Appl., 38, 1204-1209 (2002). 

  47. M. T. Radoiu, D. I. Martin, and I. Calinescu, Emission control of $SO_2$ and $NO_x$ by irradiation methods, J. Hazard. Mater., B97, 145-158 (2003). 

  48. L. Huang and Y. Dang, Removal of $SO_2$ and $NO_x$ by pulsed corona combined with in situ $Ca(OH)_2$ absorption, Chin. J. Chem. Eng., 19, 518-522 (2011). 

  49. M. Wang, Y. Sun, and T. Zhu, Removal of $NO_x$ , $SO_2$ , and Hg from simulated flue gas by plasma-absorption hybrid system, IEEE Trans. Plasma Sci., 41, 312-318 (2013). 

  50. A. Nasonova, H. C. Pham, D. J. Kim, and K. S. Kim, NO and $SO_2$ removal in non-thermal plasma reactor packed with glass beads- $TiO_2$ thin film coated by PCVD process, Chem. Eng. J., 156, 557-561 (2010). 

  51. H. C. Pham and K. S. Kim, Effect of $TiO_2$ thin film thickness on NO and $SO_2$ removals by dielectric barrier discharge-photocatalyst hybrid process, Ind. Eng. Chem. Res., 52, 5296-5301 (2013). 

  52. A. Nasonova and K. S. Kim, Effects of $TiO_2$ coating on zeolite particles for NO and $SO_2$ removal by dielectric barrier discharge process, Catal. Today, 211, 90-95 (2013). 

  53. H. W. Park, I. J. Cho, S. Choi, and D. W. Park, Flexible dielectric barrier discharge reactor with water and Teflon dielectric layers, IEEE Trans. Plasma Sci., 42, 2364-2365 (2014). 

  54. H. J. Yoon, H. W. Park, and D. W. Park, Simultaneous oxidation and absorption of $NO_x$ and $SO_2$ in an integrated $O_3$ oxidation/wet atomizing system, Energy Fuels, 30, 3289-3297 (2016). 

  55. S. Guo, L. Lv, J. Zhang, X. Chen, M. Tong, W. Kang, Y. Zhou, and J. Lu, Simultaneous removal of $SO_2$ and $NO_x$ with ammonia combined with gas-phase oxidation of NO using ozone, Chem. Ind. Chem. Eng. Q., 21, 305-310 (2015). 

  56. C. Sun, N. Zhao, H. Wang, and Z. Wu, Simultaneous absorption of $NO_x$ and $SO_2$ using magnesia slurry combined with ozone oxidation, Energy Fuels, 29, 3276-3283 (2015). 

  57. R. Kikuchi and Y. Pelovski, Low-dose irradiation by electron beam for the treatment of high- $SO_x$ flue gas on a semi-pilot scale-consideration of by-product quality and approach to clean technology, Process Saf. Environ. Prot., 87, 135-143 (2009). 

  58. I. Calinescu, D. Martin, A. Chmielewski, and D. Ighigeanu, E-beam $SO_2$ and $NO_x$ removal from flue gases in the presence of fine water droplets, Radiat. Phys. Chem., 85, 130-138 (2013). 

  59. H. Namba, O. Tokunaga, S. Hashimoto, T. Tanaka, Y. Ogura, Y. Doi, S. Aoki, and M. Izutsu, Pilot scale test for electron beam purification of flue gas from coal-combustion boiler, Radiat. Phys. Chem., 46, 1103-1106 (1995). 

  60. A. G. Chmielewski, B. Tyminski, J. Licki, E. Iller, Z. Zimek, and A. Dobrowolski, Pilot plant for flue gas treatment with electron beam-start up and two stage irradiation tests, Radiat. Phys. Chem., 42, 663-668 (1993). 

  61. A. G. Chmielewski, B. Tyminski, J. Licki, E. Iller, Z. Zimek, and B. Radzio, Pilot plant for flue gas treatment-continuous operation test, Radiat. Phys. Chem., 46, 1067-1070 (1995). 

  62. A. G. Chmielewski, E. Iller, Z. Zimek, and J. Licki, Pilot plant for electron beam flue gas treatment, Radiat. Phys. Chem., 40, 321-325 (1992). 

  63. J. S. Chang, P. C. Looy, K. Nagai, T. Yoshioka, S. Aoki, and A. Maezawa, Preliminary pilot plants tests of a corona discharge- electron beam hybrid combustion flue gas cleaning system, IEEE Trans. Ind. Appl., 32, 131-137 (1996). 

  64. Y. Doi, I. Nakanishi, and Y. Konno, Operational experience of a commercial scale plant of electron beam purification of flue gas, Radiat. Phys. Chem., 57, 495-499 (2000). 

  65. J. Kim, Y. Kim, B. Han, N. Doutzkinov, and K. Y. Jeong, Electron-beam flue-gas treatment plant for thermal power station "Sviloza" AD in Bulgaria, J. Korean Phys. Soc., 59, 3494-3498 (2011). 

  66. A. Pawelec, A. G. Chmielewski, J. Licki, B. Han, J. Kim, N. Kunnummal, and O. I. Fageeha, Pilot plant for electron beam treatment of flue gases from heavy fuel oil fired boiler, Fuel Process. Technol., 145, 123-129 (2016). 

  67. E. Tan, S. Unal, A. Dogan, E. Letournel, and F. Pellizzari, New "wet type" electron beam flue gas treatment pilot plant, Radiat. Phys. Chem., 119, 109-115 (2016). 

  68. A. A. Basfar, O.I. Fageeha, N. Kunnummal, A. G. Chmielewski, J. Licki, A. Pawelec, Z. Zimek, and J. Warych, A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology, Int. J. Nucl. Res., 55, 271-277 (2010). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로