$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

위성영상과 Maxent를 활용한 생태계교란생물 분포지역 예측 : DMZ의 단풍잎돼지풀을 대상으로
Predicting the Potential Distributions of Invasive Species Using the Landsat Imagery and Maxent : Focused on "Ambrosia trifida L. var. trifida" in Korean Demilitarized Zone 원문보기

環境復元綠化 = Journal of the Korean Society of Environmental Restoration Technology, v.20 no.1, 2017년, pp.1 - 12  

박현철 (강원대학교 대학원 조경학과) ,  임정철 (국립습지센터) ,  이정환 (국립습지센터) ,  이관규 (강원대학교 조경학과)

Abstract AI-Helper 아이콘AI-Helper

This study has been carried out for the purpose of predicting the potential habitat sites of invasive alien plants in the DMZ and providing the basic data for decision-making in managing the future DMZ natural environment. From 2007 to 2015, this study collected the data for the advent of Ambrosia t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 DMZ의 단풍잎돼지풀 분포지역을 예측하기 위해 원격탐사에 사용되는 Landsat 위성영상을 Maxent의 공간변수로 사용하였으며미래 DMZ 자연환경 관리에 필요한 의사결정기초자료 제공을 목적으로 진행되었다. 주요 연구결과는 다음과 같다.
  • 본 연구에서는 국내 종분포 모형의 공간변수에 일반적이며 지엽적으로 사용되는 지형요소(해발고도, 향방향, 경사도 등)의 한계를 극복하기 위해 원격탐사 측정 자료인 Landsat 위성영상을 공간변수로 사용하여 DMZ 지역에서의 생물종 서식지를 예측하고자 하였다. 본 연구의시도는 SAHM과 같은 통합모형의 기초자료가 될 것으로 예상되며, 향후 DMZ 자연환경관리를 위한 다양한 의사결정 방법론 연구에도 기여할 수 있기를 기대한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
종분포모형이란? 학계에서는 DMZ와 같이 현장조사가 불가능하거나 광범위한 지역을 대상으로 한 연구에 종분포모형(Species distribution models, SDMs)을주로 사용하고 있다(Elith and Leathwick, 2009).종분포모형은 생물종의 출현위치와 서식지 환경요소를 통계적으로 분석하여 잠재적인 서식지를 예측할 수 있는 도구이다(Franklin, 2010).그러나 종분포모형의 입력자료인 공간변수가생물종의 서식지 특성을 명확히 반영하지 않을경우 서식지 예측이 과적용(Over-fit)되며 모형의 불확실성(Uncertainty)은 관련 연구에 걸림돌이 되어왔다(Elith and Leathwick, 2009; Park, 2016).
DMZ 생태계 보전 및 관리의 한계점은? DMZ 생태평화공원조성 등 향후 DMZ 생태계 보전 및 관리를 위해서는 DMZ 지역에서의 생태계교란생물에 대한 분포현황 및 예측이 필수적이라 할 수 있다. 그러나 민간인 출입제한과 지뢰 매설지역(Kam and Kim, 2008)으로 인해 DMZ의 현장조사는극히 제한적으로 이루어지고 있기 때문에 현재까지 관련 정보를 활용한 정책 및 제도의 개발은 제한적인 실정이다.
생태교란이 주로 발생하는 원인은? D’Antonio et al.(2004)와 Forman and Alexander(1998)는 DMZ와 같이 사람의 출입의거의 없는 지역에서 발생되는 생태교란은 생태계 교란생물과 같은 외래종 유입에 의해 주로 발생한다고 보고한 바 있다. DMZ 생태평화공원조성 등 향후 DMZ 생태계 보전 및 관리를 위해서는 DMZ 지역에서의 생태계교란생물에 대한 분포현황 및 예측이 필수적이라 할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (41)

  1. Abul-Fatih HA and Bazzaz FA. 1979. The Biology Of Ambrosia Trifida L.. I. Influence Of Species Removal On The Organization Of The Plant Community. New Phytol 83: 813-816. 

  2. Bean WT . Stafford R and Brashares JS. 2012. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35: 250-258. 

  3. Brown JL. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution. 5(7): 694-700. 

  4. Cao Y . DeWalt RE . Robinson JL . Tweddale T . Hinz L and Pessino M. 2013. Using Maxent to model the historic distributions of stonefly species in Illinois streams: The effects of regularization and threshold selections. Ecol Model 259: 30-39. 

  5. CBD. 2008. CBD-Convention on Biological Diversity. Alien Species that Threaten Ecosystems, Habitats or Species [Article 8(h)]. United Nations. 

  6. Choi HJ . Lim SH . Kim KH and Kim S. 2007. Distribution of Giant Ragweed(Ambrosia trifida L.) at Northwest of Gangwon, Korea. Korean J Weed Sci 27: 241-247. 

  7. D'Antonio CM . Jackson NE . Horvitz CC and Hedberg R. 2004. Invasive plants in wildland ecosystems: merging the study of invasion processes with management needs. Front Ecol Environ 2: 513-521. 

  8. Diekmann F . Ford RA . Harrison SK . Regnier EE and Venkatesh R. 2013. Bibliometric Analysis of the Literature on Giant Ragweed (Ambrosia trifida L.). J Agric Food Inf 14: 290-320. 

  9. Elith J and Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40: 677. 

  10. Evangelista PH . Stohlgren TJ . Morisette JT and Kumar S. 2009. Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data. Remote Sensing. 1(3): 519-533. 

  11. Everitt JH and Deloach CJ. 1990. Remote sensing of Chinese tamarisk (Tamarix chinensis) and associated vegetation. Weed Sci: 273-278. 

  12. Forman RTT and Alexander LE. 1998. Roads and Their Major Ecological Effects. Annu Rev Ecol Syst 29: 207. 

  13. Franklin J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press. 

  14. Guo WY . Lambertini C . Li XZ . Meyerson LA and Brix H. 2013. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche. Global Change Biology. 19(11): 3406-3422. 

  15. IUCN. 2011. IUCN-International Union for Conservation of Nature. Invasive Species. 

  16. Jaynes ET. 1957. Information theory and statistical mechanics. Phys Rev 106: 620. 

  17. Jeon SW. 2007. Policies on Conservation of the DMZ District Ecosystem. Environ Policy Bull 5. 

  18. Kam K and Kim K. 2008. Detection of buried objects using ultra-wideband radar: Newly launched mine detection project in South Korea. Pages 695308-695308 in SPIE Defense and Security Symposium. International Society for Optics and Photonics. 

  19. Kim JH. 2011. DMZ Control and Utilities for the Preparation of a Basis for Peaceful Unification. The Journal of Northeast Asia Research. 26(2): 31-49. 

  20. Kim KC. 1997. Preserving Biodiversity in Korea's Demilitarized Zone. Science 278: 242-243. 

  21. Khanum R . Mumtaz AS and Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica. 49: 23-31. 

  22. Kramer-Schadt S . Niedballa J . Pilgrim JD . Schroder B . Lindenborn J . Reinfelder V . Stillfried M, Heckmann I . Scharf AK . Augeri DM and others. 2013. The importance of correcting for sampling bias in Maxent species distribution models. Divers Distrib 19: 1366-1379. 

  23. Kwon HS. 2014. Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models. Journal of Korean Society for Geospatial Information System. 22(4): 47-52 (In Korean). 

  24. Lahoz-Monfort JJ . Guillera-Arroita G . Milner Gulland EJ . Young RP and Nicholson E. 2010. Satellite imagery as a single source of predictor variables for habitat suitability modelling: how Landsat can inform the conservation of a critically endangered lemur. Journal of Applied Ecology. 47(5): 1094-1102. 

  25. Lass LW and Callihan RH. 1997. The effect of phenological stage on detectability of yellow hawkweed (Hieracium pratense) and oxeye daisy (Chrysanthemum leucanthemum) with remote multispectral digital imagery. Weed Technol: 248-256. 

  26. Lass LW . Carson HW and Callihan RH. 1996. Detection of yellow starthistle (Centaurea solstitialis) and common St. Johnswort (Hypericum perforatum) with multispectral digital imagery. Weed Technol: 466-474. 

  27. Liu C . White M and Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40: 778-789. 

  28. Merow C . Smith MJ and Silander JA. 2013. A practical guide to Maxent for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36: 1058-1069. 

  29. Naimi B . Skidmore AK . Groen TA and Hamm NA. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. Journal of Biogeography 38(8): 1497-1509. 

  30. Park HC . Lee GG and Lee JH. 2015. Regional vulnerability assessment of invasive alien plants in Seoul and Gyeonggi Province. J. Korean Env. Res. Tech. 18(6): 1-13 (In Korean). 

  31. Park HC. 2016. Development and application of climate change sensitivity assessment method for plants using the species distribution models. Ph.D. dissertation. Kanwon National University (In Korean). 

  32. Peterson EB. 2005. Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM+ data. International Journal of Remote Sensing. 26(12): 2491-2507. 

  33. Phillips SJ and Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31: 161-175. 

  34. Phillips SJ . Dudik M and Schapire RE. 2004. A maximum entropy approach to species distribution modeling. Page 83 in Proceedings of the twenty-first international conference on Machine learning. ACM. 

  35. Shin D. 2013. The potential impact of a botanical garden in the Korean Demilitarized Zone. Thesis. Master's Theses, University of Delaware. 

  36. Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293. 

  37. Watling JI . Romanach SS . Bucklin DN . Speroterra C . Brandt LA . Pearlstine LG and Mazzotti FJ. 2012. Do bioclimate variables improve performance of climate envelope models? Ecological Modelling. 246: 79-85. 

  38. Warren DL and Seifert SN. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21(2): 335-342. 

  39. West AM . Evangelista PH . Jarnevich CS . Young NE . Stohlgren TJ . Talbert C and Anderson R. 2016 Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM). Journal of Visualized Experiments: JoVE. (116). 

  40. Wilcove DS . Rothstein D . Dubow J . Phillips A and E. 1998. Quantifying threats to imperiled species in the United States. Bio-Science. 48(8): 607-615. 

  41. Wopfner N . Gadermaier G . Egger M . Asero R . Ebner C . Jahn-Schmid B and Ferreira F. 2005. The Spectrum of Allergens in Ragweed and Mugwort Pollen. Int Arch Allergy Immunol 138: 337-346. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로