$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

어류에 미치는 인위적인 수중소음 영향과 피해기준에 대한 고찰
Overview of anthropogenic underwater sound effects and sound exposure criteria on fishes 원문보기

한국어업기술학회지 = Journal of the Korean Society of Fisheries Technology, v.53 no.1, 2017년, pp.19 - 40  

박지현 (부경대학교 정보통신공학과) ,  윤종락 (부경대학교 정보통신공학과)

Abstract AI-Helper 아이콘AI-Helper

A scientific and objective sound exposure criterion for underwater sound damage on fish has been required since there has been many disputes between an underwater sound maker and a fish damage receiver. The existing criteria are still incomplete scientifically owing to a degree of variability of und...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
공중소음이 인간에 미치는 법적인 피해기준은? 공중소음이 인간에 미치는 법적인 피해기준은 초기의 다양한 소음피해 시비에 대한 판례를 기초로 하였으나, 이후 과학적 객관적 소음에 대한 평가 기술이 발전하게 되어 현재에는 연속음의 환경소음기준이 설정되어 이 기준을 근거로 피해유무가 결정된다. 그러나 연속음 평가기준인 Leq dBA는 충격소음 평가에는 부적합하여 Lmax dBA 기준을 추가하여 층간 소음 피해유무를 평가한다.
연속음 평가기준은 무엇인가? 공중소음이 인간에 미치는 법적인 피해기준은 초기의 다양한 소음피해 시비에 대한 판례를 기초로 하였으나, 이후 과학적 객관적 소음에 대한 평가 기술이 발전하게 되어 현재에는 연속음의 환경소음기준이 설정되어 이 기준을 근거로 피해유무가 결정된다. 그러나 연속음 평가기준인 Leq dBA는 충격소음 평가에는 부적합하여 Lmax dBA 기준을 추가하여 층간 소음 피해유무를 평가한다. 이러한 기준이 소음피해 시비 판정에 크게 기여하고 있으나 소음에 의한 인간의 물리적 손상, 생리 변화, 행동변화 혹은 스트레스 등의 반응을 계수화 하는 법칙은 여전히 완전하지 못하여 소음에 의한 피해 시비는 여전히 발생하고 있다.
연속음 평가기준의 한계는 무엇인가? 그러나 연속음 평가기준인 Leq dBA는 충격소음 평가에는 부적합하여 Lmax dBA 기준을 추가하여 층간 소음 피해유무를 평가한다. 이러한 기준이 소음피해 시비 판정에 크게 기여하고 있으나 소음에 의한 인간의 물리적 손상, 생리 변화, 행동변화 혹은 스트레스 등의 반응을 계수화 하는 법칙은 여전히 완전하지 못하여 소음에 의한 피해 시비는 여전히 발생하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (68)

  1. Abbott R and Bing-Sawyer E. 2002. Assessment of pile driving impacts on the Sacramento blackfish, Orthodon microlepidotus. Draft report prepared for Caltrans District 4. 

  2. Ahn JY, Lee CH, Kim YJ and Park YS. 1999. The auditory thresholds and fish behaviors to the underwater sounds for luring of target species at the set-net in the coast of Cheju (II)-Critical ratios of the yellow tail (Seriola quinqueradiata). Bull Korean Soc Fish Tech 35(1), 19-24. 

  3. ASA S3/SC1.4 TR-2014. 2014. Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI -Accredited Standards Committee S3/SC1 and registered with ANSI. Springer and ASA Press, Cham, Switzerland, 73. 

  4. Au WWL and Moore PWB. 1990. Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. J Acoust Soc Am 88, 1635-1638. 

  5. Bae JW, Park JH and Yoon JR. 2009. Characteristics of impulsive noise of waterfront construction site and its effects on fishes. Trans KSNVE 19, 928-934. 

  6. Carlson T, Hastings M and Popper AN. 2007. Update on recommendations for revised interim sound exposure criteria for fish during pile driving activities. Memorandum. 

  7. Caltrans. 2009. Technical guidance for assessment and mitigation of the hydroacoustic effects of pile driving on fish, 367. 

  8. Cho MK. 2013. Physiological effects of construction noise on fresh water fish farming. PhD. dissertation, Chungbuk National University, Korea. 

  9. Choi BK, Kim BC, Kim C and Kim BN. 2003. Analysis of dependence on wind speed and ship traffic of underwater ambient noise at shallow sea surrounding the Korean peninsula. J Acoust Soc Kor 22(3), 233-241. 

  10. Choi TH, Kim JH, Song HL and Ko CS. 2015. Suggestion of safety level in fish farming by impulsive sound. Tunnel & Underground Space 25(2), 125-132. 

  11. Coombs S and Montgomery JC. 1999. The enigmatic lateral line system, In: Fay, R. R., and Popper, A. N. (eds.) Comparative Hearing: Fish and Amphibians. Springer-Verlag, New York, 319-362. 

  12. Dahl PH. 2013. The underwater sound field from impact pile driving and its potential effects on marine life. Acoustic Today 11, 18-25. 

  13. Crum LA and Mao Y. 1996. Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety. J Acoust Soc Am 99, 2898-2907. 

  14. Denton EJ and Gray JAB. 1989. Some observations on the forces acting on neuromasts in fish lateral line canals, In: The mechanosensory lateral line-neurobiology and evolution (Coombs S, Gorner P, Munz M, eds), Springer-Verlag, Berlin, 229-246. 

  15. Denton EJ and Gray JAB. 1993. Stimulation of the acoustico-lateraline system of clupeid fish by external sources and their own movements. Phil Trans Roy Soc Lond Ser B 341, 113-127. 

  16. Division of Ocean Technology, Chonnam National Univ. 2006. Judgement report on fish farm damage by Godal bridge construction, 267. 

  17. Eaton RC, Lavender WA and Wieland CM. 1981. Identification of mauthner-initial-response patterns in the goldfish, evidence from simultaneous cinematography and electrophysiology. J Comp Physiol 144, 521-531. 

  18. Engas A, Misund OA, Soldal AV, Horvei B and Solstad A. 1995. Reactions of penned herring and cod to playback of original, frequency-filtered and time-smoothed vessel sound. Fisheries Res 22, 243-254. 

  19. Fay RR. 2011. Signal-to-noise ratio for source determination and for a comodulated masker in goldfish, Carassius auratus. J Acoust Soc Am 129(5), 3367-3372. 

  20. Fisheries hydroacoutic working group-Federal Highway Administration. 2008. Agreement in principle for interim criteria for injury to fish from pile driving activities. Memorandum. 

  21. Fisheries Science Institute, Chonnam National Univ. 2009. In-land fish farm damage and remuneration amount on sound and vibration by near-by construction. 133. 

  22. Gilham ID and Baker BI. 1985. A black background facilitates the response to stress in teleosts. J Endocrinol 105, 99-105. 

  23. Goertner JF. 1978. Dynamical model for Explosion injury to fish. Naval Surface Weapons Center White Oak Lab, Silver Spring, MD Report No, NSWC/WOL/TR-76-155. 

  24. Hastings MC. 1990. Effects of underwater sound on fish. Document No 46254-900206-01IM, Project No. 401775-1600. 

  25. Hastings MC. 1995. Physical effects of noise on fishes. Proceedings of INTER-NOISE 95; The 1995 International Congress on Noise Control Engineering, vol. II, 979-984. 

  26. Hastings MC, Popper AN, Finneran JJ and Lanford PJ. 1996. Effect of low frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish, Astronotus ocellatus. J Acoust Soc Am 99, 1759-1766. 

  27. Hastings MC and Popper AN. 2005. Effects of sound on fish. California Department of Transportation Contract 43A0139 Task Order 1, 82. 

  28. Hamernik RP and Hsueh KD. 1991. Impulse noise: some definitions, physical acoustics, and other considerations. J Acoust Soc Am 90, 189-196. 

  29. Hawkins AD and Chapman CJ. 1975. Masked auditory thresholds in the cod, Gadus morhua. J Comp Physiol 103, 209-226. 

  30. Ingemansson, 2003. Utgrunden off-shore wind farm-Measurements of underwater noise report 11-00329-03012700, 30. 

  31. Institute of Sound and Vibration Engr, Pukyong National Univ. 2007. Consultant report on fish farm damage by Godal bridge construction, 142. 

  32. Kane AS, Song J, Halvorsen MB et al. 2010. Exposure of fish to high intensity sonar does not induce acute pathology. J Fish Biol 76, 1825-1840. 

  33. Kang, DW. 1998. Gumiseokwan, Seoul, 261-270. 

  34. Kinsler LE, Frey AR, Coppens AB and Sanders JV. 2000. Fundamentals of Acoustics. 4thed.JohnWiley&Sons, NewYork, 113-126;310-321. 

  35. Korea Inter-University Institute of Ocean Science, Pukyong National University. 2005. Fisheries damage by rock removal process for Busan New Port emergency passage, 271. 

  36. Korea Inter-University Institute of Ocean Science, Pukyong National University. 2007. Fisheries damage by Busan-Kimhae light railroad construction, 188. 

  37. Korea Inter-University Institute of Ocean Science, Pukyong National University. 2014. Fisheries damage by National Highway 600-Busan outer circle road construction, 254. 

  38. Ladich F and Popper AN. 2004. Parallel evolution in fish hearing organs: In Evolution of the Vertebrate Auditory System. Springer-Verlag, New York, 98-127. 

  39. Lee CH. 2000. Study on auditory characteristics of fishes around the coast of Cheju island in Korea. PhD. dissertation, Jeju National University, 108. 

  40. Lee CH. 2009. Stress response of black rock fish according to adapted time in measurement of auditory threshold. J Korean Soc Fish Technol 45(4), 260-266. 

  41. Madsen PT, Wahlberg M, Tougaard J, K. Lucke JK and Tyack P. 2006. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar Ecol Prog Ser 309, 279-295. 

  42. Mitson RB. 1995. Underwater noise of research vessels. Cooperative research report; international council for the exploration of the sea, 65. 

  43. Hamernik RP and Hsueh KD. 1991. Impulse noise: some definitions, physical acoustics and other considerations. J Acoust Soc Am 90, 189-196. 

  44. Muller A and Zerbs C. 2011, Niederlassung Hamburg offshore wind farms measuring instruction for underwater sound monitoring. Muller-BBM GmbH, 62. 

  45. Mitson RB and Knudsen HP. 2003. Causes and effects of underwater noise on fish abundance estimation. Aquatic Liv Res 16, 255-263. 

  46. National Environmental Dispute Medication Commission, 2010. Environmental dispute medication cases of provinces. 

  47. Nedwell JR, Edwards B, Turnpenny AWH and Gordon J. 2004. Fish and marine mammal audiograms: A summary of available information. Subacoustech report 534R0214, 278. 

  48. Nedwell J, Mason T, Barham R and Cheesman S. 2012. Assessing the environmental impact of underwater noise during offshore windfarm construction and operation. Proceedings of Acoustics 2012, Fremantle, Australia, 1-5. 

  49. Ona E, Godo OR and Handegard NO. 2007. Silent research vessels are not quiet. J Acoust Soc Am 121, EL145-EL150. 

  50. Popper AN and Clarke NL. 1976. The auditory system of the goldfish, Carassius auratus: Effects of intense acoustic stimulation. Comp Biochem Physiol A53, 11-18. 

  51. Popper AN, Fay RR, Platt C and Sand O. 2003. Sound detection mechanisms and capabilities of teleost fishes: In sensory processing in aquatic environments. Springer-Verlag, New York, 3-38. 

  52. Popper AN, Halvorsen MB and Kane E. 2007. The effects of high-intensity, low-frequency active sonar on rainbow trout. J Acoust Soc Am 122, 623-635. 

  53. Richardson WJ, Greene CR, Malme CI and Thompson DH. 1995. Marine mammals and noise. Academic Press, San Diego. 

  54. Sara G, Dean JM and D'Amato D. 2007. Effect of boat noise on the behaviour of bluefin tuna, Thunnus thynnus in the Mediterranean sea. Mar Ecol Prog Ser 331, 243-253. 

  55. Seo YJ, Kim SH, Kim BY, Lee CH and Seo DO. 2003. A fundamental study on the auditory characteristics of Amberjack Seriola dumerili in the coast of the Jeju island. Bull Korean Soc Fish Tech 39(4), 269-274. 

  56. Smith ME, Kane AS and Popper AN. 2004. Noise-induced stress response and hearing loss in goldfish, Carassius auratus. J Exp Biol 207, 427-435. 

  57. Shin HO. 2000. Effect of the filing work noise on behavior of Israeli carp, Cyprinus carpio in the cage of aquaculture. J Kor Fish Soc 33, 348-355. 

  58. Shin HO. 1995. Effect of dynamite explosion work noise on the behavior of snakehead, Channa argus. J Kor Fish Soc 28, 492-502. 

  59. Southall BL, Schusterman RJ and Kastak D. 2001. Masking in three pinnipeds: underwater low-frequency critical ratios. J Acoust Soc Am 108,1322-1326 

  60. Subacoustech Ltd. A review of offshore windfarm related underwater noise sources Report No. 544 R 0308, 57. 

  61. Suga T, Akamatsu T, Kawabe R, Hiraishi T and Yamamoto K. 2005. Method for underwater measurement of the auditory brainstem response of fish. Fisheries Science 2005, 71, 1115-1119. 

  62. Tavolga WN. 1974. Signal/noise ratio and the critical band in fishes, J Acoust Soc Am 55, 1323-1333. 

  63. Urick RJ. 1983. Principle of underwater sound. 3rded.McGraw-Hill,NewYork,17-30;147-236. 

  64. Wahlberg M and Westerberg H. 2005. Hearing in fish and their reactions to sounds from offshore wind farms, Mar Ecol Prog Ser, 288, 295-309. 

  65. Wysocki LE, Davidson JW III, Smith ME. 2007. Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout, Oncorhynchus mykiss. Aquaculture 272, 687-697. 

  66. Yelverton JT, Richmond DR, Hicks W, Saunders K and Fletcher ER. 1975. The Relationship between fish size and their response to underwater blast. Report DNA 3677T, Defense Nuclear Agency, Washington DC. 

  67. Yoon JR, Lee SW and Park KC. 2007. Studies on the characteristics of sound propagation for the passive and active sonars deployed near the bottom of shallow waters. Agency for Defense Development, ADDR-420-071129. 68. 

  68. Yoon JR, Park JH and Seo CW. 2016. Sound level meter for aquatic animal. Korea Patent No 1016281620000. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로