$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cadaverine Production by Using Cross-Linked Enzyme Aggregate of Escherichia coli Lysine Decarboxylase 원문보기

Journal of microbiology and biotechnology, v.27 no.2, 2017년, pp.289 - 296  

Park, Se Hyeon (Division of Biotechnology The Catholic University of Korea) ,  Soetyono, Feilicia (Division of Biotechnology The Catholic University of Korea) ,  Kim, Hyung Kwoun (Division of Biotechnology The Catholic University of Korea)

Abstract AI-Helper 아이콘AI-Helper

Lysine decarboxylase (CadA) converts ${\small{L}}-lysine$ into cadaverine (1,5-pentanediamine), which is an important platform chemical with many industrial applications. Although there have been many efforts to produce cadaverine through the soluble CadA enzyme or Escherichia coli whole ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • A recovery test was performed using CadACLEA. After CadACLEA was used in the first reaction, it was recovered by centrifugation at 10,000 ×g for 5 min.
  • In order to determine the optimum temperature and pH, the activity of CadAfree and CadACLEA were evaluated at various temperatures and initial pH values (Figs. 3A and 3B). Both CadAfree and CadACLEA showed similar relative activity at pH 5-8.
  • Preparation of CLEAs is a useful method for the immobilization of industrial enzymes. In this research, CadACLEA was prepared by ammonium sulfate precipitation and a subsequent glutaraldehyde cross-linking process. The activity of CadACLEA was 31.
  • In this study, we prepared a CLEA using a cell-free extract of an E. coli strain overexpressing the cadA gene, characterized its biochemical properties, and compared CadACLEA with CadAfree enzyme. Subsequently, we performed bioconversion using CadACLEA for cadaverine production (Scheme 1).
  • The effects of temperature and pH were evaluated using CadAfree and CadACLEA. Their enzyme activities were assayed at various temperatures (20-70o C) to determine the optimum temperature for lysine decarboxylation.

대상 데이터

  • Primer sequences used were as follows: CadAforward (5’-GATCATATGAACGTTATTGCAATA-3’) and CadAreverse (5’-GATAAGCTTTTTTTTGCTTTCTTCTTTCAA-3’).

이론/모형

  • a Protein concentration of soluble CadA and CadACLEA were measured by the Bradford method.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Bhatia SK, Kim YH, Kim HJ, Seo HM, Kim JH, Song HS, et al. 2015. Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA. Bioprocess Biosyst. Eng. 38: 2315-2322. 

  2. Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O. 2009. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur. J. Soil Biol. 45: 12-19. 

  3. Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F. 2014. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter. J. Ind. Microbiol. Biotechnol. 41: 701-709. 

  4. Kind S, Wittmann C. 2011. Bio-based production of the platform chemical 1,5-diaminopentane. Appl. Microbiol. Biotechnol. 91: 1287-1296. 

  5. Steinbuchel A. 2005. Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr. Opin. Biotechnol. 16: 607-613. 

  6. Willke T, Vorlop KD. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66: 131-142. 

  7. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth GV, et al. 2014. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25: 113-123. 

  8. Li N, Chou H, Yu L, Xu Y. 2014. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. Biotechnol. Bioprocess Eng. 19: 965-972. 

  9. Kim HJ, Kim YH, Shin JH, Bhatia SK, Sathiyanarayanan G, Seo HM, et al. 2015. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J. Microbiol. Biotechnol. 25: 1108-1113. 

  10. Meng SY, Bennett GN. 1992. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J. Bacteriol. 174: 2659-2669. 

  11. Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. 2003. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol. 185: 13-19. 

  12. Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K. 2004. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51: 1401-1412. 

  13. Chattopadhyay MK, Tabor CW, Tabor H. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 100: 2261-2265. 

  14. Kang IH, Kim JS, Kim EJ, Lee JK. 2007. Cadaverine protects Vibrio vulnificus from superoxide stress. J. Microbiol. Biotechnol. 17: 176-179. 

  15. Kim JS, Choi SH, Lee JK. 2006. Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress. J. Bacteriol. 188: 8586-8592. 

  16. Tkachenko AG. 2004. Mechanisms of protective functions of Escherichia coli polyamines against toxic effect of paraquat, which causes superoxide stress. Biochemistry (Mosc.) 69: 188-194. 

  17. Tkachenko AG, Shumkov AV, Akhova AV. 2009. Adaptive functions of Escherichia coli polyamines in response to sublethal concentrations of antibiotics. Microbiology 78: 25-32. 

  18. Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y. 1997. Characterization of a second lysine decarboxylase isolated from Escherichia coli. J. Bacteriol. 179: 4486-4492. 

  19. Lemonnier M, Lane D. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144: 751-760. 

  20. Neely MN, Olson ER. 1996. Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J. Bacteriol. 178: 5522-5528. 

  21. Krithika G, Arunachalam J, Priyanka H, Indulekha K. 2011. The two forms of lysine decarboxylase; kinetics and effect of expression in relation to acid tolerance response in E. coli. J. Exp. Sci. 1: 10-21. 

  22. Buschke N, Schroder H, Wittmann C. 2011. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol. J. 6: 306-317. 

  23. Qian ZG, Xia XX, Lee SY. 2011. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108: 93-103. 

  24. Kim YH, Kim HJ, Shin JH, Bhatia AK, Seo HM, Kim YG, et al. 2015. Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. J. Mol. Catal. B Enzym. 115: 151-154. 

  25. Kim YH, Sathiyanarayanan G, Kim HJ, Bhatia SK, Seo HM, Kim JH, et al. 2015. A liquid-based colorimetric assay of lysine decarboxylase and its application to enzymatic assay. J. Microbiol. Biotechnol. 25: 2110-2115. 

  26. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. 

  27. Hwang ET, Gu MB. 2013. Enzyme stabilization by nano/ microsized hybrid materials. Eng. Life Sci. 13: 49-61. 

  28. Sheldon RA. 2007. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349: 1289-1307. 

  29. Han JY, Kim HK. 2011. Transesterification using the crosslinked enzyme aggregate of Photobacterium lipolyticum lipase M37. J. Microbiol. Biotechnol. 21: 1159-1165. 

  30. Tischer W, Kasche V. 1999. Immobilized enzymes: crystals or carriers? Trends Biotechnol. 17: 326-335. 

  31. Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G, et al. 2011. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J. 30: 931-944. 

  32. Vienozinskien J, Januseviciut R, Pauliukonis A, Kazlauskas D. 1985. Lysine decarboxylase assay by the pH-stat method. Anal. Biochem. 146: 180-183. 

  33. Kartal F, Kilinc A. 2012. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: preparation, optimization, characterization, and application for enantioselective resolution reactions. Biotechnol. Prog. 28: 937-945. 

  34. Mahmod SS, Yusof F, Jami MS, Khanahmadi S. 2016. Optimizing the preparation conditions and characterization of a stable and recyclable cross-linked enzyme aggregate (CLEA)-protease. Bioresour. Bioprocess. 3: 3. 

  35. Perez DI, van Rantwijk F, Sheldon RA. 2009. Cross-linked enzyme aggregates of chloroperoxidase: synthesis, optimization and characterization. Adv. Synth. Catal. 351: 2133-2139. 

  36. Ugwu SO, Apte SP. 2004. The effect of buffers on protein conformational stability. Pharm. Technol. 28: 86-109. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로